Tendencias21
Células que actúan como circuitos, nuevo paso hacia los ordenadores celulares

Células que actúan como circuitos, nuevo paso hacia los ordenadores celulares

Las llamadas “puertas lógicas” son dispositivos con los que se trabaja en la electrónica digital para introducir y producir señales en los circuitos. Recientemente, investigadores de la organización estadounidense John Hopkins Medicine han conseguido desarrollar puertas lógicas de dos tipos distintos (AND y OR) con un material sorprendente: células. El logro podría llevar a la fabricación de circuitos celulares mayores y más complejos, destinados a formar parte de los ordenadores. Por Yaiza Martínez.

Células que actúan como circuitos, nuevo paso hacia los ordenadores celulares

Un equipo de investigadores de la organización estadounidense John Hopkins Medicine ha diseñado células que se comportan como dos tipos de puertas lógicas (AND y OR –Y, O-), que son dispositivos con los que se trabaja en la electrónica digital para introducir y producir señales en los circuitos.

Las puertas lógicas celulares creadas fueron capaces de generar salidas, a partir de una o varias entradas únicas.

Según publica la John Hopkins Medicine en un comunicado, este logro podría ayudar al desarrollo futuro de ordenadores constituidos por pequeños circuitos de células.

El director del estudio, el profesor del departamento de biología celular de dicha Universidad, Takanari Inoue, explica que, en la actualidad, muchos investigadores están intentando desarrollar dispositivos cotidianos a partir de materiales biológicos, como biomoléculas o células, mediante la introducción en ellos de nuevas características.

Y algunos de estos especialistas, dedicados a un campo relativamente nuevo bautizado como “biología sintética”, están intentando crear ordenadores biológicos.

En general, la biología sintética consiste en la síntesis de biomoléculas o ingeniería de sistemas biológicos con funciones nuevas que no se encuentran en la naturaleza. Se trata de una disciplina que, a diferencia de otras, no se basa en el estudio de la biología de los seres vivos, sino que posee como objetivo el diseño de sistemas biológicos que no existen en la naturaleza.

Se busca una computación celular veloz

En la base tanto de los ordenadores corrientes como de los ordenadores biológicos se encuentran las puertas lógicas, con las que se fabrican circuitos cuyo fundamento teórico es la llamada álgebra de Boole. Estas puertas producen respuestas que varían en función del tipo y la cantidad de señales que reciben.

Por ejemplo, las puertas lógicas AND (Y) necesitan dos entradas únicas para generar una salida. Las puertas OR (O), por su parte, generan una salida en función de si reciben una entrada, otra o ambas.

Inoue afirma que investigaciones previas habían conseguido generar puertas lógica basadas en biomoléculas, en tubos de ensayo o platos de Petri.

Sin embargo, añade, el desarrollo de puertas lógicas usando células completas había demostrado ser mucho más difícil.

Esfuerzos anteriores habían aprovechado el sistema de transcripción celular (que consiste en la transferencia de la información contenida en la secuencia del ADN para generar proteínas), para crear una señal de salida. Pero la transcripción celular puede ser lenta, y la respuesta deseada tardar desde minutos a días.

“La gente quiere tener una computación veloz. Esperamos conseguir una computación en células del orden de segundos, lo que sería significativamente más rápido de lo que se ha conseguido hasta ahora”, afirma Inoue.

Sistemas sin competencia

Para alcanzar su objetivo, los científicos usaron una técnica conocida como “dimerización químicamente inducible” o CID. Esta técnica aprovecha los mecanismos biológicos en virtud de los cuales dos proteínas son reunidos en un compuesto, en presencia de una sustancia química.

Dado que las puertas AND y OR generan una respuesta a partir de dos entradas distintas, tanto unidas como por separado, los investigadores necesitaban dos sistemas CID diferentes que no compitieran ni se solaparan uno con otro.

Para conseguirlo, partieron de un sistema estudiado durante años que reúne dos proteínas –FRB y FKBP- en presencia de un medicamento llamado rapamicina. La rapamicina procede de bacterias, y la FRB y la FKBP de animales.

Además, Inoue y su equipo usaron un segundo sistema CID que reúne otras dos proteínas, la GID1 y la GAI, en presencia de una hormona vegetal o fitohormona conocida como giberelina.

Dado que la giberelina es de origen vegetal, el sistema CID basado en ella no compite con el basado en la rapamicina, explican los científicos.

Logrado este punto, Inoue y sus colaboradores diseñaron células de mamíferos capaces de producir las proteínas necesarias, así como una respuesta cuando dos proteínas precisas se reunían. De este modo, al conectarse la FRB y la FKBP o la GID1 y la GAI, las membranas de las células desarrollaron unos volantes que pudieron observarse con el microscopio, y también las señales esperadas.

Células que actúan como circuitos, nuevo paso hacia los ordenadores celulares

Respuestas de las puertas lógicas celulares

Para crear la puerta lógica OR, la FRB y la GAI se enlazaron a la membrana celular, mientras que la FKBP y la GID1 permanecían libres flotando en la célula. Añadiendo rapamicina, giberelina o ambas a las células, los científicos consiguieron que las proteínas que flotaban libremente se unieran a las de la membrana celular, provocando una señal de salida.

Para desarrollar la puerta lógica AND, los investigadores colocaron sólo la proteína GAI en la membrana celular, y dejaron flotando libremente la FRB y compuestos de FKBP y GID1 por la célula. Este sistema requirió que las cuatro proteínas antes mencionadas se enlazaran para producir los rizos en la membrana, para lo cual fueron necesarias también las señales de entrada de las dos sustancias químicas empleadas.

En pruebas realizadas con ambos sistemas se demostró que ambos tipos de puertas lógicas celulares producían la respuesta deseada, en cuestión de segundos.

Según Inoue, estos resultados sugieren que, con el tiempo, podrían usarse puertas lógicas similares para desarrollar circuitos mayores y más complejos, que podrían convertirse en la base de futuros ordenadores que utilicen las células como unidades básicas.

Los resultados de la presente investigación han aparecido detallados por Inoue y sus colaboradores, Takafumi Miyamoto, Robert DeRose, Allison Suarez, Tasuku Ueno y Melinda Chen en la revista Nature Chemical Biology.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente
  • La Inteligencia Artificial puede ser envenenada para proteger los derechos de autor 12 abril, 2024
    Una herramienta llamada Nightshade cambia imágenes digitales de manera casi imperceptible para el ojo humano, pero que se ven totalmente diferentes por los modelos de IA: una forma polémica de proteger las obras de arte de posibles infracciones de derechos de autor.
    Redacción T21
  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física con su legado 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe
  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente