Tendencias21
Cierran el círculo en torno al comportamiento cuántico de los fotones

Cierran el círculo en torno al comportamiento cuántico de los fotones

Un equipo de investigadores vieneses ha cerrado más el círculo en torno al comportamiento cuántico, contrario a la intuición, de partículas cuánticas como los fotones. En general, existe la duda de si las partículas cuánticas se comportan siempre de manera «extraña” o, simplemente, sus comportamientos reflejan carencias de los instrumentos de medida. Mediante una experimentación profunda del entrelazamiento cuántico de los fotones, los científicos consiguieron detectarlos a todos, aunque haciendo varios experimentos. Ahora solo falta el experimento definitivo, el que de una sola vez los detecte a todos… comportándose de manera cuántica.

Cierran el círculo en torno al comportamiento cuántico de los fotones

Un equipo de la Universidad de Viena (Austria), dirigido por el físico austriaco Anton Zeilinger, ha llevado a cabo un experimento con fotones, con el que han cerrado una laguna importante.

Los investigadores han conseguido con él la prueba experimental más completa de que el mundo cuántico está en conflicto con nuestra experiencia cotidiana. Los resultados de este estudio se publican esta semana en la revista Nature.

Cuando se observa un objeto, se hacen una serie de suposiciones intuitivas, entre ellas que las propiedades únicas del objeto han sido determinadas antes de la observación y que estas propiedades son independientes del estado de otros objetos, distantes. En la vida cotidiana, estas suposiciones están plenamente justificadas, pero las cosas son diferentes a nivel cuántico.

En los últimos 30 años, varios experimentos han demostrado que el comportamiento de las partículas cuánticas -tales como átomos, electrones o fotones- puede estar en conflicto con nuestra intuición básica. Sin embargo, estos experimentos nunca han conseguido respuestas definitivas.

Hasta ahora, todos los experimentos han dejado abierta la posibilidad, al menos en principio, de que las partículas observadas «aprovecharan» una debilidad del sistema experimental.

La física cuántica es una herramienta exquisitamente precisa para comprender el mundo que nos rodea a un nivel muy fundamental. Al mismo tiempo, es una base para la tecnología moderna: semiconductores (y por lo tanto, ordenadores), láseres, escáneres de resonancia magnética, y otros numerosos dispositivos se basan en efectos físicos cuánticos.

Sin embargo, incluso después de más de un siglo de intensa investigación, los aspectos fundamentales de la teoría cuántica no son del todo claros. De manera regular, laboratorios de todo el mundo han obtenido resultados que parecen en contradicción con nuestra intuición cotidiana, pero que se pueden explicar en el marco de la teoría cuántica.

El entrelazamiento cuántico

Los resultados de los físicos de Viena no reflejan un efecto nuevo, sino una profunda investigación en uno de los fenómenos más fundamentales de la física cuántica, conocido como «entrelazamiento» (entanglement). El efecto del entrelazamiento cuántico es increíble: al medir un objeto cuántico que tiene una pareja «entrelazada», el estado de la partícula 1 depende de las mediciones realizadas en su pareja.

La teoría cuántica describe el enredo como independiente de cualquier separación física entre las partículas. Es decir, el entrelazamiento también puede ser observado cuando las dos partículas están lo suficientemente separadas la una de la otra de modo que no pueden intercambiar información entre ellas (la velocidad de comunicación está fundamentalmente limitada por la velocidad de la luz). Probar tales predicciones con respecto a las correlaciones entre las partículas cuánticas entrelazadas es, sin embargo, un reto experimental importante.

Hacia una respuesta definitiva

Los jóvenes universitarios del grupo de Anton Zeilinger, entre ellos Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow y Bernhard Wittmann, en una colaboración internacional con el Instituto Nacional de Estándares y Tecnología/NIST (EE.UU.), el Physikalisch-Technische Bundesanstalt (Alemania), y el Instituto de Óptica Cuántica Max Planck (Alemania), han dado un importante paso hacia la obtención de pruebas definitivas experimentales de que las partículas cuánticas sí pueden hacer cosas que la física clásica no permite que ellos hagan.

Para su experimento, el equipo construyó una de las mejores fuentes de pares de fotones entrelazados en todo el mundo y empleó detectores de fotones de alta eficiencia diseñados por expertos del NIST.

Estos avances tecnológicos junto con un protocolo de medición adecuado permitieron a los investigadores detectar fotones entrelazados con una eficiencia sin precedentes. En pocas palabras: «Nuestros fotones ya no pueden escabullirse de ser medidos», afirma Zeilinger en la nota de prensa de la Universidad de Viena.

Un último paso

Aunque el nuevo experimento hace que los fotones sean las primeras partículas cuánticas para las cuales, en varios experimentos separados, se han cerrado todas las escapatorias posibles, aún falta el broche de oro, es decir, un experimento individual en el que se les cierren dichas escapatorias.

Tal experimento también sería de importancia fundamental para una aplicación práctica importante: la ‘criptografía cuántica’, que se basa en principios mecánicos cuánticos y se considera que es totalmente segura contra las escuchas. El espionaje es aún, sin embargo, teóricamente posible, dado que sigue habiendo lagunas. Sólo cuando todas estos están cerradas será posible un intercambio completamente seguro de mensajes.

Un experimento sin lagunas, dice Zeilinger, «es un gran reto, que atrae a grupos de todo el mundo.» Estos experimentos no se limitan a los fotones, sino que también incluyen a los átomos, electrones, y otros sistemas que muestran un comportamiento mecánico cuántico. El experimento de los físicos austriacos destaca el potencial de los fotones.

Gracias a estos últimos avances, el fotón se está quedando sin lugares donde esconderse, y los físicos cuánticos están más cerca que nunca de la prueba experimental concluyente de que la física cuántica desafía nuestra intuición y la experiencia cotidiana en la medida sugerida por la investigación de las últimas décadas.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21
  • Existen cuatro formas diferentes de sueño y cada una deja su huella 5 abril, 2024
    Un nuevo estudio ha identificado cuatro tipos distintos de "soñadores" para entender mejor el complejo problema del sueño, y explica cómo cada una de estas variedades pueden afectar el bienestar y la calidad de vida a largo plazo.
    Pablo Javier Piacente
  • Los agujeros negros pueden devorar a las estrellas desde su interior 5 abril, 2024
    Algunas estrellas pueden estar "infectadas" con agujeros negros que las destruyen desde adentro, según sugiere un nuevo estudio. De confirmarse esta hipótesis, significaría que la materia oscura estar hecha de pequeños agujeros negros "devoradores de estrellas", que se formaron en el Universo temprano.
    Pablo Javier Piacente