Tendencias21

Consiguen solidificar la luz usando un átomo artificial como ‘modelo’

Investigadores de la Universidad de Princeton (EEUU) han conseguido solidificar la luz reuniendo fotones, las partículas lumínicas básicas, y fijándolos en un espacio. Un avance «nunca visto» y que podría ayudar a comprender el comportamiento de la materia a nivel cuántico y a crear nuevos materiales. El año pasado, científicos del MIT ya consiguieron hacer que los fotones se comportasen como si tuvieran masa. Por Yaiza Martínez.

Consiguen solidificar la luz usando un átomo artificial como 'modelo'

Investigadores de la Universidad de Princeton (EEUU) han comenzado a cristalizar la luz para tratar de responder a preguntas fundamentales sobre la física de la materia; y para desarrollar materiales exóticos, tales como superconductores a temperatura ambiente.

En otras palabras, están transformando la luz en cristal. Pero, ¿cómo? Pues reuniendo fotones, las partículas lumínicas básicas, y fijándolos en un espacio.

"Es algo que nunca se ha visto antes", afirma Andrew Houck, profesor asociado de ingeniería eléctrica de dicha Universidad, y uno de los autores del avance, en un comunicado institucional. "Este es un nuevo comportamiento de la luz."

Los resultados plantean posibilidades interesantes para el desarrollo de diversos materiales futuros. Pero el mismo método podría usarse también para abordar las misteriosas cuestiones sobre la materia de las que se ocupa la física de la materia condensada (disciplina que estudia las fases “condensadas” que aparecen cuando el número de constituyentes en un sistema es extremadamente grande, y sus interacciones fuertes).

"Estamos interesados ​​en explorar – y en última instancia, controlar y dirigir – el flujo de energía a nivel atómico", explica por su parte Hakan Türeci, profesor asistente de ingeniería eléctrica y otro de los miembros del equipo de investigación. "El objetivo es entender mejor los materiales y sus procesos, para evaluar los (nuevos) materiales que podríamos crear".

Comprender el comportamiento de las partículas

Los hallazgos, detallados en la revista Physical Review X, han sido realizados en el marco de la búsqueda de un ambicioso objetivo: crear un dispositivo capaz de simular el comportamiento de las partículas subatómicas, para estudiarlas y conocerlas.

El conocimiento profundo de los átomos y de las moléculas se resiste. Resulta algo inalcanzable hoy día, incluso con los ordenadores más potentes, porque estos operan bajo las reglas de la mecánica clásica (válidas para comprender el comportamiento de objetos como las canicas o los planetas); y átomos y moléculas van por otro lado.

Estos últimos se rigen por las reglas de la mecánica cuántica, un sistema que incluye características tan extrañas y contrarias a la intuición como la del "entrelazamiento cuántico" que, a grandes rasgos, funciona de la siguiente forma: una vez que dos o más partículas se vinculan, siguen afectándose e influyéndose las unas a otras, aunque luego se encuentren separadas por largas distancias.

En definitiva, la diferencia entre las reglas cuánticas y las clásicas limitan la capacidad de una computadora estándar para estudiar de manera eficiente los sistemas cuánticos.

Una alternativa de estudio

Los científicos han esperado durante mucho tiempo el advenimiento de los ordenadores cuánticos para solucionar este problema.

Creen que un sistema informático basado en las reglas de la mecánica cuántica sí podría permitir conocer los materiales a nivel subatómico, el comportamiento de sus componentes más básicos.

Estos otros ordenadores, basados en el uso de qubits en lugar de bits y con nuevas puertas lógicas que harían posibles nuevos algoritmos, podrían abordar y arrojar luz sobre algunos problemas actualmente intratables.

Sin embargo, estas herramientas aún no se han podido desarrollar, por incontables desafíos y dificultades como sus errores arbitrarios o su fragilidad.

Por ello, para resolver esta carencia, el equipo de Princeton ha seguido otro enfoque: construir un sistema que simula directamente un comportamiento cuántico deseado. Así, aunque cada una de estas máquinas se limite a una sola tarea (un comportamiento cuántico concreto), permitirían ya responder a algunos de los problemas cuánticos más difíciles sobre la materia.

Luz que chapotea o que se congela

Para construir el dispositivo en cuestión, los investigadores crearon, con materiales superconductores, una estructura que contiene 100 mil millones de átomos y diseñada para actuar como un solo "átomo artificial".

Luego colocaron dicho átomo artificial cerca de un cable superconductor que contenía fotones. Merced a las reglas de la mecánica cuántica, los fotones del cable adquirieron, como por "contagio", algunas de las propiedades del átomo artificial, esto es, quedaron vinculados a él en cierto sentido.

Este hecho cambió su comportamiento, de tal forma que los fotones, que normalmente no interactúan entre ellos, empezaron a hacerlo. El resultado fue el siguiente: la luz pasó a mostrar un comportamiento colectivo insólito y "similar a las fases de la materia que se dan en los líquidos y los cristales que estudia la física de la materia condensada", explica Darius Sadri, otro de los protagonistas del avance.

"Aquí hemos creado una situación en la que la luz se comporta efectivamente como una partícula, en el sentido de que dos fotones pueden interactuar con mucha fuerza", añade. "En uno de los modos de funcionamiento (provocados), la luz chapotea de un lado a otro, como un líquido; en el otro modo, se congela".

El dispositivo en cuestión es relativamente pequeño, y consta de solo dos partes: aquella en que el átomo artificial permanece, y el cable superconductor.

Pero los investigadores creen que, mediante la expansión del dispositivo y del número de interacciones, se podría aumentar la capacidad de la máquina para que esta simule sistemas más complejos, desde una molécula a un material completo. Futuros dispositivos con cientos de partes permitirían observar fases exóticas de la luz, similares a las de los superfluidos y los materiales aislantes, esperan.

Sorprendente… pero no es la primera vez

Que la luz pueda solidificarse parece ciencia ficción pura. Cualquiera puede recordar en este momento el sable de luz de Luke Skywalker en Star Wars, hecho de luz láser; y su capacidad de hacer daño a los malvados.

Pero, por más sorprendente que nos parezca, no es la primera vez que se consigue. El año pasado, científicos de la Universidad de Harvard y del Instituto Tecnológico de Massachusetts (MIT) también lograron agrupar fotones dando lugar a un estado de la luz que, hasta el momento, había sido solo teórico.

En este caso, se hizo creando un tipo especial de medio en el que los fotones sí interactuaban entre ellos, con tanta fuerza que comenzaron a funcionar como si tuvieran masa, hasta unirse para formar moléculas.

Estos otros investigadores, que declararon que habían hecho este trabajo "por diversión y por forzar las fronteras de la ciencia", afirmaron que su método, algún día, podría servir para crear complejas estructuras tridimensionales -como cristales –completamente surgidas de la luz. Parece que ese día ahora esta más cerca.

Referencia bibliográfica:

J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, A. A. Houck. Observation of a Dissipation-Induced Classical to Quantum Transition://. Physical Review X (2014). DOI: 10.1103/PhysRevX.4.031043.

Ofer Firstenberg, Thibault Peyronel, Qi-Yu Liang, Alexey V. Gorshkov, Mikhail D. Lukin, Vladan Vuletić. Attractive photons in a quantum nonlinear medium. Nature (2013). DOI: 10.1038/nature12512.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • El derretimiento de los polos modifica la velocidad a la cual gira la Tierra 28 marzo, 2024
    Un nuevo estudio ha descubierto que la redistribución de la masa procedente del derretimiento del hielo polar está cambiando la velocidad a la que gira nuestro planeta. No se trata de algo anecdótico, ya que modifica la duración del año en la Tierra: los cambios han derivado en que el segundo intercalar previsto para restar […]
    Pablo Javier Piacente
  • Descubren el primer hogar del Homo Sapiens fuera de África 28 marzo, 2024
    El primer hogar que acogió al Homo Sapiens cuando emigró de África fue la así llamada Meseta Persa, donde vivió unos 20.000 años e interactuó con los neandertales hasta que oleadas de estas poblaciones se dispersaron y se asentaron por toda Eurasia.
    Redacción T21
  • Los astrónomos observan un misterioso glóbulo cometario vagando por el cosmos 27 marzo, 2024
    Utilizando el Telescopio de rastreo VLT (VST) los científicos han producido una imagen impactante de GN 16.43.7.01, un glóbulo cometario situado a 5.000 años luz de distancia de la Tierra, en la constelación de Escorpio. Se trata de pequeñas y débiles nubes interestelares de gas y polvo cósmico, con una forma similar a la de […]
    Pablo Javier Piacente
  • Sería inminente el hallazgo de vida extraterrestre en Europa, una de las lunas de Júpiter 27 marzo, 2024
    Basado en experimentos recientes, un grupo de científicos determinó en un nuevo estudio que un instrumento en particular a bordo de la futura misión Europa Clipper de la NASA, denominado SUrface Dust Analyzer, era tan sensible que probablemente podría detectar signos de vida extraterrestre en granos individuales de hielo expulsados por Europa, la luna helada […]
    Pablo Javier Piacente
  • ¿La criopreservación es el paso necesario para la resurrección moderna? 27 marzo, 2024
    En España hay cinco casos de personas sometidas a criopreservación después de fallecer, a la espera de que la tecnología permita, tal vez, volverlos a la vida en los años 50 de este siglo.
    José Luis Cordeiro (*)
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 27 marzo, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • El océano se está desgarrando 26 marzo, 2024
    2.000 terremotos en un día en Canadá insinúan el nacimiento de una nueva corteza oceánica frente a la costa de la isla de Vancouver: está a punto de nacer a través de una ruptura magmática en las profundidades del mar.
    Pablo Javier Piacente
  • Simulan una explosión termonuclear en un superordenador 26 marzo, 2024
    Una simulación por superordenador nos brinda nuevos conocimientos sobre el comportamiento de las estrellas de neutrones: al evocar la explosión termonuclear que tiene lugar cuando estos monstruos cósmicos devoran a otra estrella, los investigadores logran avanzar en la comprensión de los fenómenos más extremos que suceden en el cosmos.
    Pablo Javier Piacente
  • Las matemáticas tienen la clave para erradicar el machismo 26 marzo, 2024
    Las matemáticas demuestran que si una parte significativa de las mujeres de una población (superando el límite del 45%) se comporta solidariamente con otras mujeres (como si fuesen hermanas), el machismo se extingue.
    Alicia Domínguez y Eduardo Costas (*)
  • El cerebro nos invita a soñar despiertos y luego nos rescata del ensueño 26 marzo, 2024
    El cerebro dispone de un doble mecanismo que, por un lado, nos inspira la creatividad provocando que soñemos despiertos, y por otro, nos devuelve a la realidad para sacarnos de la divagación inútil.
    Redacción T21