Tendencias21

Crean una retina de laboratorio, usando células madre humanas

Usando un tipo de célula madre humana, investigadores de la Universidad de Johns Hopkins (EEUU) han logrado crear en laboratorio una estructura tridimensional similar a la de la retina humana, que incluye células fotorreceptoras funcionales, capaces de responder a la luz. Los científicos consideran que este es un primer paso hacia la posibilidad de sustituir el tejido retiniano enfermo o muerto con material de laboratorio, desarrollado para restaurar la visión.

Crean una retina de laboratorio, usando células madre humanas

Usando un tipo de célula madre humana, investigadores de la Universidad de Johns Hopkins (EEUU) han creado en laboratorio un complemento tridimensional del tejido de la retina humana, que incluye células fotorreceptoras funcionales, capaces de responder a la luz, que es el primer paso en el proceso de conversión de los estímulos visuales en imágenes.

"Hemos creado básicamente una retina humana en miniatura en un plato (de petri) que no sólo tiene la misma organización estrucutral de la retina, sino que además puede de percibir la luz", explica la directora del estudio, M. Valeria Canto-Soler, profesora asistente de oftalmología en la Escuela de Medicina de la Universidad Johns Hopkins, en un comunicado de dicho centro.

La especialista añade que el trabajo, publicado en Nature Communications, "proporciona oportunidades de investigación para salvar la visión y, en última instancia, puede dar lugar a tecnologías que restauren la visión en personas con enfermedades de la retina".

Un buen comienzo

Al igual que muchos procesos del cuerpo, la visión depende de muchos tipos diferentes de células que trabajan concertadas, en este caso, para convertir la luz en algo que pueda ser reconocido por el cerebro como una imagen.

Canto Soler advierte que los fotorreceptores son sólo parte del proceso complejo de la visión que desarrollan los ojos y el cerebro, y que su laboratorio aún no ha recreado todas las funciones del ojo humano y su relación con la corteza visual cerebral.

"¿Es nuestra retina de laboratorio capaz de producir una señal visual que el cerebro pueda interpretar como una imagen? Probablemente no, pero este es un buen comienzo", señala.

El logro surgió de experimentos con células madre pluripotentes inducidas (iPS) humanas y podría, con el tiempo, propulsar la ingeniería genética necesaria para futuros trasplantes de células de la retina que detengan e incluso reviertan el proceso de la ceguera, aseguran los investigadores.

Las células iPS son células adultas que han sido reprogramadas genéticamente para devolverlas a su estado más primitivo. Bajo las circunstancias correctas, estas células pueden convertirse en la mayoría de todos los tipos de células del cuerpo humano.

En este caso, el equipo de la Johns Hopkins las convirtió en células progenitoras de la retina, que son las destinadas a formar el tejido de la retina sensible a la luz que recubre la parte posterior del ojo.

Una técnica sencilla

Usando una técnica sencilla y directa para impulsar el crecimiento de las células progenitoras de la retina, Canto-Soler y su equipo vieron cómo crecían células de la retina y tejidos en platos de Petri.

Este desarrollo celular conllevó el mismo ritmo y duración del desarrollo de la retina de un feto humano en el interior del útero.

Por otra parte, los fotorreceptores resultantes fueron lo suficientemente maduros como para desarrollar segmentos exteriores, una estructura de fotorreceptores esencial para su funcionamiento.

El tejido de la retina es complejo, pues comprende siete tipos principales de células, entre ellos seis tipos de neuronas, que se organizan en capas de células específicas que absorben y procesan la luz, “ven”, y transmiten esas señales visuales al cerebro para su interpretación. Las retinas de laboratorio recrean esa arquitectura tridimensional de la retina humana.

"Sabíamos que una estructura celular en 3D era necesaria si queríamos reproducir las características funcionales de la retina", explica Canto Soler, "pero cuando comenzamos este trabajo, no pensamos que las células madre podrían acumularse una retina casi por su cuenta. En nuestro sistema, de alguna manera, las células supieron qué hacer".

Cuando el tejido de la retina de laboratorio se hallaba en una fase equivalente a las 28 semanas de desarrollo fetal en el útero, con los fotorreceptores ya bastante maduros, los investigadores probaron estas mini-retinas para ver si estos fotorreceptores podían de hecho registrar y transformar la luz en señales visuales.

Lo hicieron mediante la colocación de un electrodo en una sola célula fotorreceptora y luego enviando un pulso de luz a esta célula, que hizo que esta reaccionara siguiendo un patrón bioquímico similar al del comportamiento de los fotorreceptores en personas expuestas a la luz.

En concreto, dice Canto Soler, los fotorreceptores cultivados en laboratorio respondieron a la luz del mismo modo que lo hacen los bastones de la retina. Las retinas humanas contienen dos tipos principales de células fotorreceptoras, llamadas bastones y conos. La inmensa mayoría de los fotorreceptores de los humanos son bastones, que permiten la visión en condiciones de poca luz. Las retinas cultivadas por el equipo de la Johns Hopkins también tenían sobre todo bastones.

Potenciales aplicaciones

Canto Soler señala que el sistema permite generar cientos de mini-retinas a la vez directamente de una persona afectada por una enfermedad de la retina en particular, como la retinosis pigmentaria, lo que supone una oportunidad única para estudiar la causa de enfermedades de la retina en tejido humano, en lugar de hacer en modelos animales.

El sistema, concluye, también abre un abanico de posibilidades para la medicina personalizada, pues permitiría probar fármacos para tratar enfermedades de manera específica para cada paciente. A largo plazo, también existe la posibilidad de reemplazar el tejido retiniano enfermo o muerto con material de laboratorio desarrollado para restaurar la visión.

Referencia bibiliográfica:

Xiufeng Zhong, Christian Gutierrez, Tian Xue, Christopher Hampton, M. Natalia Vergara, Li-Hui Cao, Ann Peters, Tea Soon Park, Elias T. Zambidis, Jason S. Meyer, David M. Gamm, King-Wai Yau, M. Valeria Canto-Soler. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications (2014). DOI: 10.1038/ncomms5047.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los astrónomos observan un misterioso glóbulo cometario vagando por el cosmos 27 marzo, 2024
    Utilizando el Telescopio de rastreo VLT (VST) los científicos han producido una imagen impactante de GN 16.43.7.01, un glóbulo cometario situado a 5.000 años luz de distancia de la Tierra, en la constelación de Escorpio. Se trata de pequeñas y débiles nubes interestelares de gas y polvo cósmico, con una forma similar a la de […]
    Pablo Javier Piacente
  • Sería inminente el hallazgo de vida extraterrestre en Europa, una de las lunas de Júpiter 27 marzo, 2024
    Basado en experimentos recientes, un grupo de científicos determinó en un nuevo estudio que un instrumento en particular a bordo de la futura misión Europa Clipper de la NASA, denominado SUrface Dust Analyzer, era tan sensible que probablemente podría detectar signos de vida extraterrestre en granos individuales de hielo expulsados por Europa, la luna helada […]
    Pablo Javier Piacente
  • ¿La criopreservación es el paso necesario para la resurrección moderna? 27 marzo, 2024
    En España hay cinco casos de personas sometidas a criopreservación después de fallecer, a la espera de que la tecnología permita, tal vez, volverlos a la vida en los años 50 de este siglo.
    José Luis Cordeiro (*)
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 27 marzo, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • El océano se está desgarrando 26 marzo, 2024
    2.000 terremotos en un día en Canadá insinúan el nacimiento de una nueva corteza oceánica frente a la costa de la isla de Vancouver: está a punto de nacer a través de una ruptura magmática en las profundidades del mar.
    Pablo Javier Piacente
  • Simulan una explosión termonuclear en un superordenador 26 marzo, 2024
    Una simulación por superordenador nos brinda nuevos conocimientos sobre el comportamiento de las estrellas de neutrones: al evocar la explosión termonuclear que tiene lugar cuando estos monstruos cósmicos devoran a otra estrella, los investigadores logran avanzar en la comprensión de los fenómenos más extremos que suceden en el cosmos.
    Pablo Javier Piacente
  • Las matemáticas tienen la clave para erradicar el machismo 26 marzo, 2024
    Las matemáticas demuestran que si una parte significativa de las mujeres de una población (superando el límite del 45%) se comporta solidariamente con otras mujeres (como si fuesen hermanas), el machismo se extingue.
    Alicia Domínguez y Eduardo Costas (*)
  • El cerebro nos invita a soñar despiertos y luego nos rescata del ensueño 26 marzo, 2024
    El cerebro dispone de un doble mecanismo que, por un lado, nos inspira la creatividad provocando que soñemos despiertos, y por otro, nos devuelve a la realidad para sacarnos de la divagación inútil.
    Redacción T21
  • Las ondas cerebrales se mueven en direcciones opuestas para crear recuerdos y luego para recuperarlos 25 marzo, 2024
    Los científicos descubrieron que las ondas cerebrales tendían a moverse desde la parte posterior del cerebro hacia el frente mientras las personas guardaban algo en su memoria. Por el contrario, cuando buscaban recordar la misma información, esas ondas se movían en la dirección opuesta, desde el frente hacia la parte posterior del cerebro.
    Pablo Javier Piacente
  • Descubren una de las estrellas más antiguas del Universo muy cerca de la Vía Láctea 25 marzo, 2024
    La estrella LMC 119 fue apreciada en la Gran Nube de Magallanes, muy cerca de la Vía Láctea, y es la primera estrella de la segunda generación de formación estelar del Universo que se ha identificado en otra galaxia. Esta estrella, una de las más antiguas en el cosmos descubiertas hasta hoy, proporciona una ventana […]
    Pablo Javier Piacente