Tendencias21
Descubren una estrella de neutrones que se comporta según modelos teóricos

Descubren una estrella de neutrones que se comporta según modelos teóricos

Una investigación liderada por el español Manu Linares, del MIT, ha descubierto la primera estrella de neutrones que explosiona conforme al modelo teórico previsto en la década de los 70. El hallazgo revela detalles inéditos sobre la importancia de la rotación en las explosiones estelares. Por Pere Estupinyà/SINC.

Descubren una estrella de neutrones que se comporta según modelos teóricos

Los físicos recelan de los detalles que no terminan de encajar. No pueden ignorarlos por pequeños que sean. Les hacen temer la existencia de algún error fundamental en sus modelos y teorías. Por eso tras más de tres decenios de incertidumbre, los expertos en estrellas de neutrones respiran un poco más tranquilos gracias al estudio publicado en The Astrophysical Journal por el español Manu Linares desde el Instituto Tecnológico de Massachusetts (MIT, por sus siglas en inglés).

Terzan 5 es la primera estrella de neutrones que se comporta tal y como la teoría predice: a mayor ritmo de acreción, explosiones más frecuentes. El misterio que entramaban las estrellas de neutrones era el siguiente: desde los años 70 los astrofísicos las han estado estudiando a partir de las explosiones que se producen en sus capas externas. Pero las estrellas de neutrones no explotaban como ellos pensaban que debían hacerlo. Hasta que por fin Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

Bombas de energía

Las estrellas de neutrones son el objeto observable más denso que existe en el universo. Son masas parecidas a nuestro Sol pero comprimidas en un radio de 8 a 15 kilómetros. En su interior la fuerza de la gravedad es billones de veces mayor a la terrestre. La descomunal presión compacta los átomos hasta que protones y electrones se funden formando neutrones. La temperatura y densidad son tan extremas que estos neutrones podrían llegar a romperse y dejar libres sus quarks.

A los astrofísicos les interesan sobremanera porque sus condiciones no existen en ningún otro lugar del universo observable. “Es como un laboratorio natural que nos permite investigar las leyes de la física en un rango de energías, densidades y campos magnéticos inalcanzables en la Tierra“, explica Manu Linares a SINC.

Círculo vicioso hasta la explosión

Cuando una estrella de neutrones se encuentra cerca de otra estrella convencional, va absorbiendo plasma de sus capas exteriores que se irá compactando en la superficie de la estrella de neutrones a razón de hasta 100 kilogramos de materia por segundo y centímetro cuadrado. A medida que esta materia se va acumulando, la densidad se hace más intensa, la temperatura crece, y se empiezan a producir violentas reacciones termonucleares.

Los átomos de hidrógeno se fusionan en helio, y los de helio llegan a fusionarse en átomos más pesados. Son condiciones extremas, pero durante un tiempo el proceso es estable: la energía se va disipando de la estrella al mismo ritmo que se genera.

“Todas las estrellas de neutrones investigadas hasta la fecha giraban con una frecuencia de entre 200 y 600 rotaciones por segundo. En cambio Terzan 5 lo hace solo a 11 rotaciones por segundo”

Sin embargo, cuando se alcanza una masa crítica en la superficie de la estrella de neutrones, estas reacciones pasan a ser inestables: se produce energía más rápido de lo que puede escapar.

Entonces el proceso se acelera de manera dramática y se entra en un círculo vicioso: más reacciones de fusión, mayor densidad, más temperatura; más reacciones de fusión, mayor densidad, más temperatura; hasta que en cuestión de segundos se produce una brutal explosión que, entre otras cosas, genera los rayos X que los astrofísicos utilizan para investigar las estrellas de neutrones.

Ahora bien, es de suponer que cuanto más rápido se acumule materia en la superficie de la estrella, antes se alcanzará la masa crítica y más frecuentes serán las explosiones. Sin embargo, en 100 estrellas de neutrones investigadas desde los años 70 hasta la fecha, esto nunca se había cumplido hasta el trabajo de Manu Linares.

“Lo que observábamos era que cuando la acreción de material era lenta, sí se producían las explosiones tal y como el modelo predecía. Pero cuando se acumulaba de manera rápida, las explosiones eran menos frecuentes o incluso inexistentes. Y no entendíamos por qué”, explica Linares.

La rotación es la clave

En el estudio publicado el 20 de marzo de 2012 en The Astrophysical Journal, los investigadores del MIT, de la Universidad McGill, la de Minnesota y la de Amsterdam proponen una explicación al misterio de la falta de explosiones.

“La clave está en la rotación”, explica Linares. “Todas las estrellas de neutrones investigadas hasta la fecha giraban con una frecuencia de entre 200 y 600 rotaciones por segundo. En cambio Terzan 5 lo hace solo a 11 rotaciones por segundo”.

Terzan 5 es la primera estrella de neutrones que se comporta tal y como la teoría predice: a mayor ritmo de acreción, explosiones más frecuentes. Y la principal diferencia con las observadas hasta el momento es su relativamente lenta velocidad de rotación.

«Esto nos fuerza a pensar que en nuestros modelos para describir estrellas de neutrones hemos infravalorado la rotación”, matiza Linares. Esto forzará una revisión de los modelos actuales.

Los detalles importan

Hay varias hipótesis para explicar por qué altas velocidades de rotación impiden las explosiones en estrellas de neutrones. Podría ser que a mayor rotación la fricción entre capas generara un aumento localizado de temperatura que afectara a las reacciones termonucleares. Otra opción es la aparición de turbulencias que mezclen el contenido de capas superiores e interiores.

Manu insiste en que “entender el origen de las explosiones termonucleares es fundamental porque es justo lo que utilizamos para investigar el interior de las estrellas de neutrones”.

No entendemos bien cómo se comporta la materia a energías tan elevadas como las del interior de una estrella de neutrones. Un detalle como conocer su tamaño exacto nos puede dar indicios del grado de compactación de las partículas y servir para ver si nuestras leyes físicas se cumplen en esas condiciones.

“La naturaleza nos brinda un laboratorio único, pero para poder sacar conclusiones debemos comprender bien cómo funciona el experimento”, concluye Linares.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los astrónomos observan un misterioso glóbulo cometario vagando por el cosmos 27 marzo, 2024
    Utilizando el Telescopio de rastreo VLT (VST) los científicos han producido una imagen impactante de GN 16.43.7.01, un glóbulo cometario situado a 5.000 años luz de distancia de la Tierra, en la constelación de Escorpio. Se trata de pequeñas y débiles nubes interestelares de gas y polvo cósmico, con una forma similar a la de […]
    Pablo Javier Piacente
  • Sería inminente el hallazgo de vida extraterrestre en Europa, una de las lunas de Júpiter 27 marzo, 2024
    Basado en experimentos recientes, un grupo de científicos determinó en un nuevo estudio que un instrumento en particular a bordo de la futura misión Europa Clipper de la NASA, denominado SUrface Dust Analyzer, era tan sensible que probablemente podría detectar signos de vida extraterrestre en granos individuales de hielo expulsados por Europa, la luna helada […]
    Pablo Javier Piacente
  • ¿La criopreservación es el paso necesario para la resurrección moderna? 27 marzo, 2024
    En España hay cinco casos de personas sometidas a criopreservación después de fallecer, a la espera de que la tecnología permita, tal vez, volverlos a la vida en los años 50 de este siglo.
    José Luis Cordeiro (*)
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 27 marzo, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • El océano se está desgarrando 26 marzo, 2024
    2.000 terremotos en un día en Canadá insinúan el nacimiento de una nueva corteza oceánica frente a la costa de la isla de Vancouver: está a punto de nacer a través de una ruptura magmática en las profundidades del mar.
    Pablo Javier Piacente
  • Simulan una explosión termonuclear en un superordenador 26 marzo, 2024
    Una simulación por superordenador nos brinda nuevos conocimientos sobre el comportamiento de las estrellas de neutrones: al evocar la explosión termonuclear que tiene lugar cuando estos monstruos cósmicos devoran a otra estrella, los investigadores logran avanzar en la comprensión de los fenómenos más extremos que suceden en el cosmos.
    Pablo Javier Piacente
  • Las matemáticas tienen la clave para erradicar el machismo 26 marzo, 2024
    Las matemáticas demuestran que si una parte significativa de las mujeres de una población (superando el límite del 45%) se comporta solidariamente con otras mujeres (como si fuesen hermanas), el machismo se extingue.
    Alicia Domínguez y Eduardo Costas (*)
  • El cerebro nos invita a soñar despiertos y luego nos rescata del ensueño 26 marzo, 2024
    El cerebro dispone de un doble mecanismo que, por un lado, nos inspira la creatividad provocando que soñemos despiertos, y por otro, nos devuelve a la realidad para sacarnos de la divagación inútil.
    Redacción T21
  • Las ondas cerebrales se mueven en direcciones opuestas para crear recuerdos y luego para recuperarlos 25 marzo, 2024
    Los científicos descubrieron que las ondas cerebrales tendían a moverse desde la parte posterior del cerebro hacia el frente mientras las personas guardaban algo en su memoria. Por el contrario, cuando buscaban recordar la misma información, esas ondas se movían en la dirección opuesta, desde el frente hacia la parte posterior del cerebro.
    Pablo Javier Piacente
  • Descubren una de las estrellas más antiguas del Universo muy cerca de la Vía Láctea 25 marzo, 2024
    La estrella LMC 119 fue apreciada en la Gran Nube de Magallanes, muy cerca de la Vía Láctea, y es la primera estrella de la segunda generación de formación estelar del Universo que se ha identificado en otra galaxia. Esta estrella, una de las más antiguas en el cosmos descubiertas hasta hoy, proporciona una ventana […]
    Pablo Javier Piacente