Tendencias21

El espacio tiempo se distorsiona junto a los agujeros negros

Científicos norteamericanos han comprobado y medido por vez primera la distorsión del espacio tiempo que por efecto de la gravedad se produce en torno a un agujero negro. Cien años después de la formulación de la Teoría de la Relatividad, la ciencia confirma de nuevo una de las predicciones de Einstein, sobre las que se apoya además la teoría física de los viajes en el tiempo. Los datos se han obtenido mediante las observaciones realizadas por un satélite de la Nasa sobre un agujero negro bautizado como GRS 1945+105, situado a unos 40.000 años luz de la Tierra, en la constelación de Águila. Por Yaiza Martínez.

El espacio tiempo se distorsiona junto a los agujeros negros

Un equipo de astrónomos ha descubierto evidencias que confirman que la enorme fuerza gravitacional de un agujero negro puede absorber todo aquello que le rodea, incluida la luz. Se trata de una serie de mediciones que muestran, además, cómo estos cuerpos celestes arrastran en su giro el espacio tiempo que los bordea, creando en sus cercanías un océano espacio temporal distorsionado.

La deformación del espacio-tiempo por la fuerza de gravitación fue predicha en Einstein. Las teorías especial y general de la Relatividad de Einstein, escritas en 1905 y 1916 respectivamente, mostraron que muy altas velocidades o una intensificación de la gravedad, pueden curvar el tiempo de la misma forma que lo haría una pelota sobre una lámina de goma.

Cuanta más elevada es la velocidad o más intensa la gravedad, mayor es la curvatura del tiempo, más conocida como dilatación. Sobre esta suposición se basa la teoría física de los viajes en el tiempo, ya que algunos científicos han usado estas distorsiones en el tiempo espacial para pensar posibles maneras en que podrían funcionar las máquinas de tiempo.

Jon Miller, del Harvard-Smithsonian Center for Astrophysics y Jeroen Homan, del Center for Space Research del MIT, en Massachussetts, han observado la distorsión del espacio tiempo por efecto de la gravedad con el satélite de la NASA Rossi X-ray Timing Explorer. Según Miller, autor de un artículo publicado en The Astrophysical Journal Letters, los datos obtenidos demostrarían las predicciones de Einstein acerca de la naturaleza difícilmente conocible de los agujeros negros.

Desvelados por los rayos X

Un agujero negro es una región del espacio donde las fuerzas gravitacionales son tan grandes que ni siquiera la luz puede evadirlas. Los gases y el polvo que le rodean se arremolinan a su alrededor y acaban cayendo dentro de él como el agua en una vasija.

Este proceso genera copiosas cantidades de luz, predominantemente de radiaciones de rayos X, sobre todo en las regiones más internas del llamado “disco de acrecimiento”, que se define como una estructura en forma de disco alrededor de un objeto central masivo.

Cerca del agujero negro, la gravedad es más intensa, pero la luz puede todavía encontrar un escape hacia el exterior de su atracción gravitacional. En esa “huida” de la luz hacia fuera, ésta pierde una energía que se emite en forma de rayos X, que los científicos pueden estudiar con telescopios de rayos X como el Rossi Explorer. De esta forma, es posible el acercamiento a los agujeros negros, que por su naturaleza oscura resultan prácticamente inasequibles.

La importancia de las mediciones de Miller y Homan radica en que, por primera vez, se ha descubierto una conexión entre dos características importantes que nos llegan a través de la observación de los agujeros negros: las llamadas “oscilaciones quasi-periódicas” u QPOs, y la amplitud de la línea k de las emisiones de los gases de hierro que rodean a los agujeros.

Coincidencia y cercanía

Las oscilaciones quasi-periódicas o QPOs hacen referencia a la forma en que la luz de los rayos X parece parpadear. La amplitud de la línea k de los gases de hierro describe las formas registradas en los espectros electromagnéticos de los rayos X (estos espectros son una herramienta con la que los científicos analizan ciertas características de la luz, como su energía).

La luz procedente de los átomos de los gases del hierro, al caer al interior del agujero negro, emite una frecuencia específica que crea una línea brillante en el espectro. Esta línea se ensancha, o se estrecha para bajas energías, debido a que la luz pierde energía cuando sale de un campo gravitacional.

Usando el Rossi Explorer, Miller y Homan han estudiado un agujero negro bautizado como GRS 1945+105, situado a unos 40.000 años luz de la Tierra, en la constelación de Águila. Los científicos notaron que una baja frecuencia QPO de 1 a 2 hertzios estaba relacionada con ciertos cambios en la línea k.

El hecho de que ambas señales se encuentren en sincronía y no se vean afectadas por otros fenómenos, sugiere que ambas suceden muy cerca del agujero negro. Y esto, dicen los científicos, elimina una teoría que afirmaba que las líneas k de los gases de hierro se originaban lejos del agujero negro.

El espacio tiempo se distorsiona junto a los agujeros negros

Nuevas cuestiones

El descubrimiento genera sin embargo la siguiente pregunta: ¿qué causa la conexión entre ambas mediciones? La alta frecuencia QPOs parece provenir de la materia que gira alrededor del agujero negro, que brilla intensamente. La materia se mueve mucho más rápido alrededor de un agujero negro que en cualquier otro lugar. Las frecuencias que se registran son, por lo tanto, de cientos de hertzios, o de cientos de revoluciones del disco de acrecimiento por segundo.

En cambio, las bajas frecuencias QPOs son un profundo misterio. Normalmente son de 1 a 10 hertzios y son muy comunes en muchos sistemas binarios con agujeros negros. Un sistema binario es aquel formado por dos estrellas, que puede estar compuesto asimismo por un agujero negro.

Miller y Homan afirman que estas bajas QPO del sistema del agujero negro GRS 1915+105 pueden deberse a una deformación del espacio-tiempo. En este caso, el oscilamiento de la frecuencia baja QPO estaría causado por el arrastre de la estructura geométrica del espacio situado alrededor del agujero negro. Es lo que se conoce como el “efecto Lense-Thirring”, desarrollado a partir de la Teoría General de la Relatividad de Einstein.

El efecto Lense-Thirring

Enunciado en 1997 y recientemente también verificado, el efecto Lense-Thirring es el que describe el movimiento rotatorio de la Tierra. Este efecto consiste en el "arrastre" de la estructura geométrica del espacio-tiempo debido al movimiento del cuerpo que origina al campo gravitatorio-inercial.

La rotación de la Tierra o de cualquier otro cuerpo debería producir -según la Relatividad General- un arrastre de la estructura geométrica que su propia masa genera al curvar el espacio-tiempo.

La deformación espacio temporal podría incrementar la superficie del área del disco de acrecimiento. La amplitud de las líneas k depende de la superficie de dicha área. Así, este incremento momentáneo en la superficie del área, que oscila entre 1 ó 2 hertzios, podría explicar los cambios repetitivos observados en las líneas k de los gases de hierro.

Cada vez que el gas de hierro encuentra la deformación del espacio tiempo, la luz sufre una sacudida y el ancho de las líneas k modifica su apariencia.

Miller y Homan advierten de que ésta es sólo una de las posibles explicaciones derivadas de sus observaciones, y de que otras explicaciones también serían posibles. Lo que parece claro, dicen los científicos, es que parece haber una conexión entre las QPOs y el ancho de las líneas k, lo que significa que los científicos están más cerca que nunca de conocer como nunca la realidad de los agujeros negros.

Yaiza Martinez

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren neuronas "zombis" en el cerebro, que serían claves en el proceso de aprendizaje 9 abril, 2024
    Las neuronas "zombis" son unidades vivas pero funcionalmente alteradas, que parecen "dormidas" en determinadas situaciones: los investigadores han revelado que cumplen un papel fundamental en el cerebelo, concretamente en aspectos relativos a la forma en la cual aprendemos.
    Pablo Javier Piacente
  • La Luna se invirtió por completo hace más de 4 mil millones de años 9 abril, 2024
    Hace unos 4.220 millones de años, poco después de que la Luna se formara a partir de un trozo de la Tierra que se desprendió durante una colisión violenta a principios de la historia del Sistema Solar, nuestro satélite se dio vuelta y comenzó así una etapa clave de su desarrollo. Así lo ha comprobado […]
    Pablo Javier Piacente
  • Arte rupestre de hace 2.000 años podría representar música psicodélica 9 abril, 2024
    Aunque la música psicodélica moderna no nació hasta la década de 1960, las influencias psicodélicas se pueden encontrar en el arte rupestre de hace miles de años. Grabados precolombinos en piedra, de 2.000 años de antigüedad, reflejan figuras humanas bailando en estado de trance chamánico.
    Redacción T21
  • Descubren antiguas partículas de polvo espacial provenientes de otro sistema estelar 8 abril, 2024
    Los astrónomos han descubierto una rara partícula de polvo atrapada en un antiguo meteorito extraterrestre, que fue formado por una estrella distinta a nuestro Sol. El polvo se habría originado luego de una supernova: las partículas son como "cápsulas del tiempo celestes" y proporcionan una instantánea de la vida de su estrella madre.
    Pablo Javier Piacente
  • Un lejano mundo deja ver una increíble explosión de luz en sus cielos "metálicos" 8 abril, 2024
    Utilizando datos del Telescopio Espacial CHEOPS de la Agencia Espacial Europea (ESA), cuyo centro de operaciones científicas se localiza en la Universidad de Ginebra, en Suiza, un equipo internacional de científicos logró detectar por primera vez un extraño fenómeno lumínico denominado “gloria” en un exoplaneta: el estallido de luz se apreció en WASP-76b, un mundo […]
    Pablo Javier Piacente
  • El ordenador cuántico desembarca en el mundo universitario 8 abril, 2024
    La última computadora cuántica System One de IBM se ha instalado en el Instituto Politécnico Rensselaer (RPI) en Nueva York. Es la primera máquina cuántica de IBM instalada en un campus universitario de Estados Unidos. Una revolución en el mundo académico que impulsa la formación de un ecosistema cuántico global.
    Eduardo Martínez de la Fe
  • Los cocodrilos imitan a las ballenas antes de aparearse 7 abril, 2024
    Los cocodrilos cortejan a las hembras lanzando un chorro de agua al aire, tal como hacen las ballenas cuando salen a la superficie. A ellas les encantan también los silbidos y las burbujas que les dedican sus parejas antes de aparearse. Se está elaborando un diccionario de cocodrilos.
    Redacción T21
  • Los drones policiales se implantan en Estados Unidos 6 abril, 2024
    Chula Vista, un suburbio de San Diego, California, con una población de 275.000 habitantes, es una de las pocas ciudades estadounidenses que utiliza sistemáticamente drones para ayudar a la policía en caso de emergencia. En activo desde 2018, el sistema está sirviendo de referencia a otros Estados y tal vez otros países.
    Redacción T21
  • Existen cuatro formas diferentes de sueño y cada una deja su huella 5 abril, 2024
    Un nuevo estudio ha identificado cuatro tipos distintos de "soñadores" para entender mejor el complejo problema del sueño, y explica cómo cada una de estas variedades pueden afectar el bienestar y la calidad de vida a largo plazo.
    Pablo Javier Piacente
  • Los agujeros negros pueden devorar a las estrellas desde su interior 5 abril, 2024
    Algunas estrellas pueden estar "infectadas" con agujeros negros que las destruyen desde adentro, según sugiere un nuevo estudio. De confirmarse esta hipótesis, significaría que la materia oscura estar hecha de pequeños agujeros negros "devoradores de estrellas", que se formaron en el Universo temprano.
    Pablo Javier Piacente