Tendencias21
El superordenador Jaguar revela los secretos del carbono-14

El superordenador Jaguar revela los secretos del carbono-14

Científicos del Oak Ridge National Laboratory, de Estados Unidos, han conseguido profundizar en el estudio del núcleo atómico, concretamente, del núcleo del carbono-14, gracias a la asombrosa capacidad de cálculo de uno de los más potentes superordenadores del mundo, Jaguar. Este sistema computacional ha permitido a los investigadores analizar las interacciones de tríos de nucleones (combinaciones triples de protones y neutrones) y establecer así la causa de la extensa vida media del carbono-14. Hasta ahora, la teoría de los núcleos atómicos había asumido que la fuerza a dos cuerpos (de las interacciones entre dos partículas) resultaba suficiente para explicar el funcionamiento del núcleo del átomo, en parte, por la imposibilidad de hacer cálculos mucho más complejos, y hasta el momento inabarcables. Por Yaiza Martínez.

El superordenador Jaguar revela los secretos del carbono-14

El núcleo de un átomo es mucho más complejo de lo que se pensaba inicialmente. Parte de esta complejidad es la que tratan de desentrañar investigadores del proyecto Petascale Early Sciencie del Oak Ridge National Laboratory (ORNL), que es un laboratorio nacional estadounidense de multiprogramas de ciencia y tecnología.

Según los descubrimientos realizados hasta ahora por este equipo de científicos, dirigido por David Dean, para comprender bien el funcionamiento y las interacciones de los núcleos atómicos se deben tener en cuenta unas complejas interacciones entre partículas ( neutrones y protones) que conforman dichos núcleos. A dichas interacciones no se había podido acceder hasta el desarrollo de ordenadores superpotentes, capaces de hacer cálculos descomunales.

Primer estudio de interacciones triples

Estas interacciones nucleares serían, en concreto, de fuerza a tres cuerpos ( o three-body force). Esta fuerza no existe en un sistema de dos objetos, pero aparece en un sistema de tres cuerpos.

Hasta ahora, la teoría de los núcleos atómicos había asumido que la fuerza a dos cuerpos resultaba suficiente para explicar el funcionamiento del núcleo atómico. Es decir, se consideraba que, a partir de las interacciones combinadas de pares de protones y neutrones en los núcleos atómicos, podían conocerse la vida media de núcleos atómicos inestables (vida de un núcleo antes de desintegrarse, representada con la letra griega “τ”), y el proceso probabilístico de desintegración de dicho núcleo.

Sin embargo, Dean y sus colaboradores señalan que el estudio de la fuerza a dos cuerpos en realidad es insuficiente para la comprensión del núcleo atómico y de sus procesos.

En su trabajo, los investigadores consiguieron calcular las combinaciones, no de dos partículas, sino de tres partículas al mismo tiempo (tres protones, tres neutrones o conjuntos de dos de estas partículas con una tercera del otro tipo), dentro de los núcleos atómicos, publica el ONRL en un comunicado. Según los científicos, los resultados obtenidos difieren de los cálculos nucleares en función de las fuerzas a dos cuerpos y, además, son más exactos que éstos.

El papel de la interacción nuclear fuerte

Los núcleos de los átomos se mantienen gracias a la llamada interacción nuclear fuerte, que es una de las cuatro fuerzas básicas del universo. Las otras tres fuerzas son la gravedad, que mantiene unidos a los planetas, los sistemas solares y las galaxias, y gracias a la cual tenemos la sensación del peso; la interacción electromagnética, que ocurre entre las partículas subatómicas con carga eléctrica y que hace posible la congregación de la materia; y la interacción nuclear débil, que favorece la desintegración nuclear.

El superordenador Jaguar revela los secretos del carbono-14

En el núcleo atómico, la interacción nuclear fuerte actúa principalmente combinando las partículas que componen los neutrones y protones conocidas como quarks (cada protón y cada neutrón están formados por tres quarks). Esta combinación se realiza a través del intercambio de gluones, que son los portadores o mediadores de la interacción nuclear fuerte.

Por otro lado, la interacción nuclear fuerte también mantiene unidos a protones y neutrones vecinos, dentro del mismo núcleo atómico. Esta unión, sin embargo, no es perfecta. De hecho, muchos núcleos atómicos son instables y eventualmente se descomponen, emitiendo una o más partículas y transformándose en un núcleo más pequeño.

Cálculos de Jaguar

Aunque los científicos no pueden determinar con exactitud cuando un núcleo se descompondrá, sí que han podido establecer la probabilidad de que esto ocurra en un determinado intervalo de tiempo.

Se considera que la media de vida de un isótopo (los isótopos son átomos de un mismo elemento, con núcleos de masa distinta al de dicho elemento) es el tiempo que tarda su núcleo en descomponerse. Las medias de vida conocidas hasta ahora van desde la pequeña fracción de segundo del berilio 8 (Be-8), hasta los 2,2 x 10 elevado a 24 años del radioisótopo Telurio 128, por ejemplo.

Una de las labores de la teoría nuclear, por tanto, es determinar porqué los núcleos atómicos tienen diferentes medias de vida, y predecir su duración. Según explica una de las autoras del estudio, la físico computacional del ORNL, Hai Ah Nam: “Durante mucho tiempo, la teoría nuclear ha asumido que las fuerzas entre dos cuerpos eran las más importantes, y que las fuerzas entre más cuerpos carecían de importancia”.

Esto se debe a que, por un lado, las interacciones nucleares entre dos cuerpos sirven para describir algunos núcleos. Y, por otro lado, a que cálculos que incluyan las fuerzas a tres cuerpos son muy difíciles, y precisan de ordenadores superpotentes, como el sistema Jaguar del ORNL, que es el sistema informático más potente de los Estados Unidos.

Gracias a Jaguar, cuyo rendimiento alcanza los 1,759 petaflops, o lo que es lo mismo, es capaz de realizar 1.759 billones de operaciones por segundo (un petaflop equivale a mil billones de operaciones por segundo), los científicos han podido analizar la fuerza a tres cuerpos del núcleo de un isótopo del carbono, el carbono-14.

Descubrimientos sobre el carbono-14

Este isótopo, cuyo núcleo tiene seis protones y ocho neutrones, es famoso porque se utiliza para la datación del carbono, y permite determinar la edad de restos de plantas y animales de hasta 60.000 años de antigüedad.

Según Nam, “Con Jaguar se han podido hacer cálculos, utilizando las fuerzas a tres cuerpos, de la vida media del carbono 14”. Los resultados obtenidos han revelado que las mediciones realizadas hasta ahora sobre el núcleo del carbono-14 (mediciones basadas en las fuerzas a dos cuerpos) subestimaban drásticamente la vida media del isótopo.

Además, según publica Sciencedaily, han permitido comprender porqué el carbono-14 tiene una vida media de 6.000 años, mientras otros núcleos atómicos tienen una vida media de tan sólo unos segundos: cómo son las interacciones simultáneas entre los nucleones que posibilitan esta duración. Por último, señala Nam: los resultados del estudio demuestran por vez primera a gran escala la importancia de la fuerza a tres cuerpos en la constitución nuclear.

Sin embargo, el método del estudio nuclear a través de la fuerza a tres cuerpos no debe sustituir al método basado en la fuerza a dos cuerpos, añade la investigadora, sino que ambos métodos deben ser combinados para presentar una imagen más refinada de la estructura del núcleo.

Aplicación utilizada

En el presente estudio, Dean y sus colaboradores usaron una aplicación para superordenadores, la Many Fermion Dynamics, nuclear (MFDn), que fue desarrollada por uno de los miembros del equipo de investigación, el especialista en física aplicada de la Iowa State University, James Vary.

Gracias a ella, los investigadores pudieron analizar el núcleo atómico del carbono 14 siguiendo un modelo nuclear orbital y métodos ab initio o cálculos basados en las fuerzas fundamentales entre protones y neutrones.

De forma similar al modelo atómico orbital que explica cuántos electrones pueden encontrarse en una órbita concreta, el modelo nuclear orbital describe el número de protones y neutrones que pueden encontrarse en un nivel dado de energía. En términos generales, la reunión de estos nucleones (como se denomina a los protones y neutrones) en el nivel más bajo de energía disponible hasta la adición de alguna partícula más violaría el principio de exclusión de Pauli, que establece que dos partículas jamás pueden encontrarse en el mismo estado cuántico.

En este punto, algunos nucleones se mueven hacia el nivel de energía más alto, y así sucesivamente. La fuerza entre los núcleos complica esta imagen y genera un problema computacional enorme a resolver.

Los cálculos realizados por Dean y su equipo implicaron, de hecho, una matriz de un quintillón (10 elevado a 30) de valores. Como apunta Nam, por tanto, sólo afrontar los cálculos fue una tarea extremadamente compleja, puesto que dicha matriz ocupó 240 terabytes de memoria. Según la investigadora: “Jaguar es el único sistema del mundo con la capacidad de almacenar tanta información para un solo cálculo, que supone una tarea descomunal, de memoria intensiva”.

En un futuro, esta tarea será incluso más asombrosa si se llega a poder medir núcleos mayores que el del carbono-14. Pero, para hacerlo, los investigadores tendrán que esperar al desarrollo de nuevos superordenadores, suficientemente potentes como para calcular la naturaleza de los mayores núcleos atómicos, a través de la fuerza a tres cuerpos y, tal vez, a través de la fuerza a más nucleones.

Los resultados de la presente investigación han aparecido detallados en la revista Physical Review Letters.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren al delfín de río más grande de la historia 23 marzo, 2024
    Un equipo de científicos ha descubierto en la Amazonía peruana los fósiles del delfín de río más grande de la Tierra. Era un pariente cercano de los delfines asiáticos y no de los delfines amazónicos que hoy habitan las aguas dulces de América del Sur.
    N+1/T21
  • Detectan emisiones de radio similares a auroras sobre las manchas solares 22 marzo, 2024
    Los astrónomos han observado explosiones de radio duraderas similares a auroras sobre una mancha solar: el descubrimiento podría ayudarnos a comprender mejor al Sol, así como facilitar la identificación de estrellas distantes que producen emisiones de radio similares.
    Pablo Javier Piacente
  • Descubren un material que se hace más fuerte con cada golpe 22 marzo, 2024
    Un nuevo material elástico presenta una increíble "durabilidad adaptativa": cada vez que se cae o se golpea, su fuerza se incrementa y se vuelve más difícil de romper. Podría ser de gran utilidad en futuros dispositivos electrónicos como nuevos teléfonos móviles, relojes inteligentes o tabletas, que están continuamente expuestos a todo tipo de golpes. Además, […]
    Pablo Javier Piacente
  • El Arco de Gibraltar está migrando desde el Mediterráneo hacia el Atlántico 22 marzo, 2024
    Una zona de subducción que se origina en el Mediterráneo occidental se está moviendo desde la región franco-española hacia el sur. Actualmente está a la altura de la frontera entre España y Portugal y se propaga hacia el Atlántico bajo el Estrecho de Gibraltar.
    JGU/T21
  • Antiguas canoas revelan cómo los marinos del Neolítico surcaron el Mediterráneo 21 marzo, 2024
    Una nueva investigación liderada por Juan Gibaja, del Consejo Nacional de Investigaciones Científicas (CSIC) de España, y publicada recientemente en la revista PLOS One, arroja luz sobre las primeras embarcaciones neolíticas en el Mediterráneo: las excavaciones en el pueblo de agricultores de la Edad de Piedra de La Marmotta, en Italia, han permitido recuperar cinco […]
    Pablo Javier Piacente
  • En los próximos meses, una "nueva estrella" iluminará el cielo nocturno 21 marzo, 2024
    Los científicos de la NASA han informado que durante este año el sistema estelar T Coronae Borealis podrá verse a simple vista en el cielo nocturno, luego de una violenta explosión cósmica que tendrá lugar en algún momento en los próximos seis meses. La “nueva estrella” en el cielo podrá apreciarse sin la ayuda de […]
    Pablo Javier Piacente
  • La Antártida puede perder su neutralidad y su actividad exclusivamente científica 21 marzo, 2024
    El cambio climático y la creciente demanda de recursos está sacudiendo de la Antártida como continente neutral y exclusivamente científico. La rivalidad entre potencias ha comenzado a hacerse presente en las costas antárticas.
    Eduardo Martínez de la Fe
  • Los primeros recuerdos son solo reconstrucciones mentales 21 marzo, 2024
    Lejos de ser grabaciones fidedignas de la realidad, los primeros recuerdos son más bien un mosaico compuesto por experiencias reales, narrativas familiares y reconstrucciones mentales. A medida que crecemos, este mosaico se enriquece y se transforma, pero los fragmentos de nuestra primera infancia permanecen, en gran medida, como piezas imaginadas en un rompecabezas de la […]
    Redacción T21
  • Los vínculos sociales alinean a las personas en la misma longitud de onda 20 marzo, 2024
    El vínculo social mejora el intercambio de información y sincroniza las actividades cerebrales entre el líder de un grupo y sus seguidores, colocando a todo el grupo en la misma longitud de onda cerebral, según un nuevo estudio de sincronización neuronal.
    Pablo Javier Piacente
  • Partículas desconocidas de energía oscura serían la fuerza impulsora detrás de la expansión del Universo 20 marzo, 2024
    Una nueva investigación teórica sugiere que la misteriosa energía oscura estaría compuesta por "no partículas" y podría estar ligada a la expansión del cosmos, "separando" lentamente al Universo. Esto explicaría por qué los científicos no logran comprender aún en profundidad cómo el Universo se expande de forma cada vez más acelerada. También revelaría la causa […]
    Pablo Javier Piacente