Tendencias21
Estudian partículas individuales aprovechando el entrelazamiento cuántico

Estudian partículas individuales aprovechando el entrelazamiento cuántico

Un equipo de físicos especializados en mecánica cuántica de la Universidad de Innsbruck (Austria) ha ideado un método extremadamente sensible de espectroscopia que podría ser usado para estudiar de cerca partículas subatómicas, átomos y moléculas individuales. La técnica está basada en un trabajo anterior que permitió fabricar relojes atómicos extremadamente precisos.

Estudian partículas individuales aprovechando el entrelazamiento cuántico

Un equipo de físicos especializados en mecánica cuántica de la Universidad de Innsbruck (Austria), dirigidos por Christian Roos y Cornelius Hempel, han desarrollado un método extremadamente sensible de espectroscopia atómica y molecular, esto es, de análisis de la luz emitida por las partículas mínimas que componen la materia.

La técnica, detallada en Nature Photonics, podría ser usada para estudiar de cerca diversas partículas subatómicas, según informa la Universidad de Innsbruck en un comunicado.

Hace casi 200 años, el físico bávaro Joseph von Fraunhofer descubrió oscuras líneas en el espectro solar. Más tarde se constató que estas líneas podían usarse para inferir la composición química y la temperatura de la atmósfera del Sol. Hoy se puede obtener información sobre diversos objetos a través de mediciones lumínicas similares.

Dada la importancia de este tipo de mediciones para conocer la naturaleza de muchas cosas – entre ellas, los cuerpos celestes del cosmos-, los físicos andan siempre buscando métodos de espectroscopia cada vez más sensibles.

En casos extremos, puede ser necesario incluso medir de manera exacta no sólo la luz en general, sino incluso sus partículas individuales o fotones, lo que supone todo un desafío técnico.

Mirando con física cuántica

Los científicos austriacos, del Instituto de Óptica Cuántica e Información Cuántica (IQOQI) de la Academia Austriaca de las Ciencias y del Instituto de Física Experimental de la Universidad de Innsbruck, consiguieron este objetivo usando una técnica de espectroscopia de lógica cuántica.

Esta técnica fue desarrollada hace unos años por un equipo de investigadores dirigido por el premio Nobel David Wineland, para construir relojes atómicos extremadamente precisos.

Esta sería una de las aplicaciones prácticas de la técnica, que en los próximos años podría además impulsar la redefinición del segundo, en el Sistema Internacional de Unidades.

Los trabajos de Wineland también han abarcado otras líneas de investigación, como el enfriamiento láser de partículas iónicas o el uso de iones atrapados para implementar operaciones de computación cuántica. Todo ello usando métodos de medición y manipulación de partículas individuales sin alterar su naturaleza cuántica, con formas que hasta ahora eran impensables.

Un ion que «habla» del otro

Christian Roos, Cornelius Hempel y sus colaboradores, por su parte, comenzaron aislando iones (partículas subatómicas con carga eléctrica) individuales en una trampa de iones, con el fin de estudiarlos bajo condiciones controladas.

“No intentamos detectar el fotón emitido o absorbido por un ion, sino el impulso que el ion recibía, más allá de su absorción o de su emisión”, explica Hempel.

“Aunque este efecto es extremadamente pequeño, pudimos detectarlo por medio de la física cuántica”, añade. Los físicos usaron un ion “lógico” adicional, con el que se realizó la medición. “Este ion de calcio (el 40Ca+) puede ser controlado muy bien en experimentos”, señala Hempel. Como ion para la espectroscopia los científicos usaron otro isótopo del calcio (el 44Ca+).

En el experimento, un haz de láser excitó a las partículas e hizo que el estado electrónico del ion lógico se entrelazara con la vibración de dichas partículas.

“En esta configuración, también denominada estado del gato de Schrödinger, los iones se balancearon como un péndulo clásico, dentro de la trampa. Pero, como “péndulo cuántico”, se balancearon en ambas direcciones a la vez”, sigue diciendo Hempel.

“Excitamos entonces el ion que queríamos investigar (el de la espectroscopia) aplicando diversas frecuencias de láser. A cierta frecuencia ese ion emitió un fotón individual y recibió un impulso mínimo, lo que hizo que los componentes vibracionales se vieran ligeramente desplazados. Este efecto pudo observarse a través del estado electrónico del ion lógico. Combinada con esta información, la frecuencia del láser nos permitió obtener información sobre el estado interno del ion de la espectroscopia”.

En el experimento, los científicos lograron detectar fotones individuales con una probabilidad del 12%, lo que prueba que la técnica en principio funciona. Si se optimizara, su sensibilidad podría aumentarse considerablemente, aseguran los investigadores.

Posibles aplicaciones

“Usando el concepto exótico del entrelazamiento cuántico‎ hemos conseguido obtener un conocimiento práctico sobre partículas individuales”, afirma Roos.

Además, “dado que nuestro método de medición no depende tanto de la longitud de onda del fotón detectado, podría ser usado para diversos propósitos”.

Por ejemplo, los niveles de energía de diferentes átomos y moléculas podrían ser investigados usando esta técnica. Asimismo, dado que resulta difícil controlar moléculas experimentalmente, este método podría suponer un progreso enorme para el estudio de estructuras más complejas.

Referencia bibliográfica:

C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt y C. F. Roos. Entanglement-enhanced detection of single-photon scattering events. Nature Photonics (2013). DOI: 10.1038/nphoton.2013.172.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Desarrollan un enjambre de cucarachas cyborgs controladas por IA para misiones peligrosas 19 abril, 2024
    Un equipo científico ha logrado crear un sistema robótico que permite manejar a distancia un pequeño ejército de cucarachas cyborgs, controladas a través de un algoritmo de Inteligencia Artificial (IA) para optimizar su navegación. Podrían ser de gran utilidad en operaciones de salvataje y gestión de desastres.
    Pablo Javier Piacente
  • La geometría del caos, ¿futuro de la arquitectura? 19 abril, 2024
    Las asimétricas celosías chinas de rayos de hielo, con una antigüedad de al menos 200 años, pueden inspirar la arquitectura actual porque proporcionan mayor estabilidad, resistencia y estética, que las estructuras simétricas. Además, sus patrones geométricos son los mismos que muestran nuestros huesos.
    Redacción T21
  • Los abrazos alivian la ansiedad y la depresión, según un nuevo estudio 18 abril, 2024
    Los abrazos y otras formas de contacto físico pueden ayudar con la salud mental en personas de todas las edades, según una nueva revisión de 212 estudios previos. Aunque esto ya estaba claro, los expertos aún no habían podido determinar qué tipo de contacto es el que genera más ventajas y por qué.
    Pablo Javier Piacente
  • Corrientes de estrellas y materia oscura diseñaron a la Vía Láctea 18 abril, 2024
    Restos de galaxias absorbidas por la Vía Láctea conforman corrientes estelares que la diseñaron a lo lardo de su historia. Algunas de esas fusiones podrían arrojar luz sobre el misterio de la materia oscura.
    Pablo Javier Piacente
  • Ya vivimos en un mundo de ciencia ficción 18 abril, 2024
    El Meta World Congress celebrado la semana pasada en Madrid ha dejado claro que los mundos virtuales y los videojuegos son el laboratorio de un Metaverso cada vez más inteligente y que la tecnología inmersiva cambiará el teatro y los conciertos. Un proceso de fusión de inteligencias llevará a la creatividad artificial a mezclarse con […]
    ALEJANDRO SACRISTÁN (enviado especial)
  • Descubren el pan más antiguo en Turquía: tiene 8.600 años 17 abril, 2024
    Un equipo de arqueólogos ha descubierto el pan más antiguo conocido en todo el mundo, que data del año 6600 a. C. Fue identificado en Çatalhöyük, un destacado asentamiento neolítico en Anatolia central, Turquía.
    Pablo Javier Piacente
  • Detectan un enorme agujero negro dormido en nuestra galaxia 17 abril, 2024
    El agujero negro de masa estelar más monstruoso de la Vía Láctea es un gigante dormido que acecha cerca de la Tierra, según un nuevo estudio. Con una masa casi 33 veces mayor que la del Sol, esta colosal estructura cósmica yace oculta a menos de 2.000 años luz de nuestro planeta, en la constelación […]
    Pablo Javier Piacente
  • Los pájaros reviven en sus sueños experiencias reales 17 abril, 2024
    Una investigación increíble ha descubierto que los pájaros a veces sueñan que están defendiendo su territorio frente a rivales, mostrándose con una cresta erizada de plumas y con un trino asociado al enfrentamiento.
    Redacción T21
  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente