Tendencias21

Imitan en laboratorio las condiciones extremas del universo

Investigadores del acelerador de partículas SLAC, de EE.UU., han realizado tres experimentos que simulan las condiciones extremas del universo. En concreto, han imitado el efecto del impacto de meteoritos sobre el grafito, que produce una forma muy dura y rara de diamante; la transformación de hidrógeno en metal que se produce en los planetas gigantes gaseosos; y la aceleración extrema de partículas producida por un fenómeno denominado ‘reconexión magnética’.

Imitan en laboratorio las condiciones extremas del universo

Las condiciones en el Universo pueden ser bastante extremas: choques violentos, reacciones nucleares, explosiones gigantescas. Pero, ¿cómo se desarrollan exactamente estos procesos? ¿Qué es lo que nos dicen sobre el universo? ¿Y se podría aprovechar su potencia para el beneficio de la humanidad?

Para averiguarlo, investigadores del Acelerador SLAC estadounidense, en California, realizan experimentos y simulaciones por ordenador sofisticadas que recrean violentas condiciones cósmicas a pequeña escala en el laboratorio.

«El campo de la astrofísica de laboratorio está creciendo muy rápidamente, alimentado por una serie de avances tecnológicos», dice Siegfried Glenzer, de la División de Ciencia de Alta Densidad de Energía de SLAC, en la nota de prensa de éste. «Ahora tenemos láseres de alta potencia para crear estados extremos de la materia, fuentes de rayos X de última generación para el análisis de estos estados a nivel atómico, y superordenadores de alto rendimiento para ejecutar simulaciones complejas que guían y ayudan a explicar nuestros experimentos. Con sus capacidades sobresalientes en estas áreas, SLAC es un lugar especialmente fértil para este tipo de investigación».

Tres estudios recientes ejemplifican este enfoque, arrojando luz sobre los impactos de meteoritos, los núcleos de los planetas gigantes y aceleradores de partículas cósmicas un millón de veces más potentes que el Gran Colisionador de Hadrones (LHC, del CERN), la pista de carreras de partículas más grande de la Tierra.

Meteoritos

La alta presión puede convertir una forma suave de carbono -el grafito, utilizado como mina de lápices- en una forma extremadamente dura el diamante. ¿Puede suceder lo mismo cuando un meteoro impacta con el grafito del suelo? Los científicos han predicho que sí, y que estos impactos, de hecho, podrían ser lo suficientemente potentes como para producir una forma de diamante, llamado lonsdaleíta, que es incluso más dura que el diamante normal.

«La existencia de lonsdaleíta se ha discutido, pero ahora hemos encontrado evidencia convincente», dice Glenzer, co-investigador principal de un estudio publicado en Nature Communications.

El equipo calentó una superficie de grafito con un potente pulso de láser óptico que desencadenó una onda de choque dentro de la muestra y la comprimió rápidamente. Aplicando rayos X brillantes y ultrarrápidos a través de la muestra, los investigadores fueron capaces de ver cómo el choque cambiaba la estructura atómica del grafito.

Planetas gigantes

Un segundo estudio, publicado también en Nature Communications, observó otra transformación peculiar que podría ocurrir dentro de los planetas gaseosos gigantes como Júpiter, cuyo interior está compuesto en gran parte de hidrógeno líquido: A alta presión y temperatura, se cree que este material pasa de su estado «normal», de aislante eléctrico, a uno metálico, de conducción.

«La comprensión de este proceso proporciona nuevos detalles sobre la formación de planetas y de la evolución del sistema solar», dice Glenzer, que fue también co-investigador principal de este estudio. «A pesar de que la transición ya había sido predicho en la década de 1930, nunca hemos tenido una ventana directa a los procesos atómicos.»

Es decir, no hasta que Glenzer y sus colegas científicos no realizaron un experimento en el Laboratorio Nacional Lawrence Livermore (LLNL), donde comprimieron y calentaron rápidamente una muestra de deuterio líquido, una forma pesada de hidrógeno, y crearon un estallido de rayos X que demostró que se habían producido cambios estructurales en la muestra.

El equipo vio que por encima de una presión de 250.000 atmósferas y una temperatura de 3.870 grados centígrados, el deuterio cambiaba de hecho de ser un fluido neutro y aislante a uno ionizado y metálico.

«Las simulaciones por ordenador sugieren que la transición coincide con la separación de dos átomos normalmente unidos en moléculas de deuterio», dice el autor principal Paul Davis, que era estudiante de posgrado en la Universidad de California en Berkeley y en LLNL en el momento del estudio. «Parece que a medida que la presión y la temperatura de la onda de choque inducida por láser divide las moléculas, sus electrones se sueltan y son capaces de conducir la electricidad.»

El estudio también podría ayudar a la investigación sobre el uso de deuterio como combustible nuclear para las reacciones de fusión que replican procesos análogos a los del interior del Sol y otras estrellas.

Acelerador cósmico

En un tercer ejemplo del universo extremo, los aceleradores de partículas cósmicas tremendamente -cerca de los agujeros negros supermasivos, por ejemplo- impulsan corrientes de gas ionizado, llamado plasma, a cientos de miles de años luz, en el espacio. La energía almacenada en estas corrientes y en sus campos electromagnéticos se puede convertir en unas pocas partículas extremadamente energéticas, que producen muy breves pero intensos estallidos de rayos gamma que se pueden detectar en la Tierra.

Los científicos quieren saber cómo funcionan estos impulsores de energía, ya que ayudaría a entender mejor el universo. También les podría dar nuevas ideas para construir mejores aceleradores de partículas.

Los investigadores creen que una de las principales fuerzas impulsoras de los aceleradores cósmicos podría ser la «reconexión magnética», un proceso en el que las líneas del campo magnético de los plasmas se rompen y se vuelven a conectar de una manera diferente, liberando energía magnética.

«La reconexión magnética se había observado ya en el laboratorio, por ejemplo, en experimentos con dos plasmas en colisión que se crearon con láseres de alta potencia», dice Federico Fiúza, investigador de SLAC e investigador principal de un estudio teórico publicado en Physical Review Letters. «Sin embargo, ninguno de estos experimentos de láser han producido una aceleración de partículas no térmica: una aceleración no sólo relacionada con el calentamiento del plasma. Sin embargo, nuestro trabajo demuestra que con el diseño correcto, los experimentos actuales deben ser capaces de verlo».

Su equipo llevó a cabo una serie de simulaciones por ordenador que predicen cómo se comportarían las partículas de plasma en tales experimentos. Los cálculos más exigentes, con cerca de 100 mil millones de partículas, requirieron más de un millón de horas de CPU y más de un terabyte de memoria del superordenador Mira del Argonne National Laboratory (Illinois).

«Determinamos los parámetros clave para los detectores requeridos», dice el autor principal del estudio, Samuel Totorica, estudiante de doctorado en el grupo de Tom Abel de la Universidad Stanford y en SLAC. «Nuestros resultados son una receta para el diseño de experimentos futuros que quieran estudiar cómo ganan energía las partículas a través de la reconexión magnética».

Referencias bibliográficas:

D. Kraus, A. Ravasio, M. Gauthier, D. O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L. B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E. J. Gamboa, S. Göde, E. Granados, G. Gregori, H. J. Lee, P. Neumayer, W. Schumaker, T. Döppner, R. W. Falcone, S. H. Glenzer, M. Roth: Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications (2016). DOI: 10.1038/ncomms10970.

P. Davis, T. Döppner, J. R. Rygg, C. Fortmann, L. Divol, A. Pak, L. Fletcher, A. Becker, B. Holst, P. Sperling, R. Redmer, M. P. Desjarlais, P. Celliers, G. W. Collins, O. L. Landen, R. W. Falcone, S. H. Glenzer: X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium. Nature Communications (2016). DOI: 10.1038/ncomms11189.

Samuel R. Totorica, Tom Abel y Frederico Fiuza: Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas. Physical Review Letters (2016). DOI:http://dx.doi.org/10.1103/PhysRevLett.116.095003.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • El contacto con la naturaleza cambia nuestra percepción del tiempo 28 marzo, 2024
    Investigaciones recientes y en particular un nuevo estudio han demostrado que la naturaleza puede regular nuestro sentido del tiempo: estar en ámbitos naturales puede cambiar la forma en que experimentamos el tiempo y, tal vez, brindarnos la sensación de abundancia de tiempo que las exigencias de la vida contemporánea suelen reducir drásticamente.
    Pablo Javier Piacente
  • El derretimiento de los polos modifica la velocidad a la cual gira la Tierra 28 marzo, 2024
    Un nuevo estudio ha descubierto que la redistribución de la masa procedente del derretimiento del hielo polar está cambiando la velocidad a la que gira nuestro planeta. No se trata de algo anecdótico, ya que modifica la duración del año en la Tierra: los cambios han derivado en que el segundo intercalar previsto para restar […]
    Pablo Javier Piacente
  • Descubren el primer hogar del Homo Sapiens fuera de África 28 marzo, 2024
    El primer hogar que acogió al Homo Sapiens cuando emigró de África fue la así llamada Meseta Persa, donde vivió unos 20.000 años e interactuó con los neandertales hasta que oleadas de estas poblaciones se dispersaron y se asentaron por toda Eurasia.
    Redacción T21
  • Los astrónomos observan un misterioso glóbulo cometario vagando por el cosmos 27 marzo, 2024
    Utilizando el Telescopio de rastreo VLT (VST) los científicos han producido una imagen impactante de GN 16.43.7.01, un glóbulo cometario situado a 5.000 años luz de distancia de la Tierra, en la constelación de Escorpio. Se trata de pequeñas y débiles nubes interestelares de gas y polvo cósmico, con una forma similar a la de […]
    Pablo Javier Piacente
  • Sería inminente el hallazgo de vida extraterrestre en Europa, una de las lunas de Júpiter 27 marzo, 2024
    Basado en experimentos recientes, un grupo de científicos determinó en un nuevo estudio que un instrumento en particular a bordo de la futura misión Europa Clipper de la NASA, denominado SUrface Dust Analyzer, era tan sensible que probablemente podría detectar signos de vida extraterrestre en granos individuales de hielo expulsados por Europa, la luna helada […]
    Pablo Javier Piacente
  • ¿La criopreservación es el paso necesario para la resurrección moderna? 27 marzo, 2024
    En España hay cinco casos de personas sometidas a criopreservación después de fallecer, a la espera de que la tecnología permita, tal vez, volverlos a la vida en los años 50 de este siglo.
    José Luis Cordeiro (*)
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 27 marzo, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • El océano se está desgarrando 26 marzo, 2024
    2.000 terremotos en un día en Canadá insinúan el nacimiento de una nueva corteza oceánica frente a la costa de la isla de Vancouver: está a punto de nacer a través de una ruptura magmática en las profundidades del mar.
    Pablo Javier Piacente
  • Simulan una explosión termonuclear en un superordenador 26 marzo, 2024
    Una simulación por superordenador nos brinda nuevos conocimientos sobre el comportamiento de las estrellas de neutrones: al evocar la explosión termonuclear que tiene lugar cuando estos monstruos cósmicos devoran a otra estrella, los investigadores logran avanzar en la comprensión de los fenómenos más extremos que suceden en el cosmos.
    Pablo Javier Piacente
  • Las matemáticas tienen la clave para erradicar el machismo 26 marzo, 2024
    Las matemáticas demuestran que si una parte significativa de las mujeres de una población (superando el límite del 45%) se comporta solidariamente con otras mujeres (como si fuesen hermanas), el machismo se extingue.
    Alicia Domínguez y Eduardo Costas (*)