Tendencias 21. Ciencia, tecnología, sociedad y cultura




La Tierra no se parece a sus planetas “gemelos”

Un equipo internacional, en el que ha participado el IAC, descubre diferencias en las composiciones químicas de estos cuerpos celestes aparentemente similares


Cada vez que se hace público el descubrimiento de algún planeta extrasolar similar a la Tierra, vuelve a aparecer la expectativa de la posibilidad de vida extraterrestre. Sin embargo, estos gemelos de la Tierra no siempre son tan parecidos al planeta azul. Un equipo internacional con participación del Instituto de Astrofísica de Canarias (IAC) ha descubierto que la estructura química de los planetas de tipo terrestre puede ser muy diferente de la composición básica de la Tierra, lo que tendría un gran impacto en la existencia y la formación de las biosferas.





En el trabajo se ha estudiado el sistema planetario gobernado por la estrella 55Cnc, en el que el planeta análogo a la Tierra, su gemelo, presenta una composición química muy distinta. Fuente: NASA.
En el trabajo se ha estudiado el sistema planetario gobernado por la estrella 55Cnc, en el que el planeta análogo a la Tierra, su gemelo, presenta una composición química muy distinta. Fuente: NASA.
Cada vez que se hace público el descubrimiento de algún planeta extrasolar similar a la Tierra, vuelve a aparecer la expectativa de la posibilidad de vida extraterrestre. Sin embargo, estos gemelos de la Tierra no siempre son tan parecidos al planeta azul. Un equipo internacional con participación del Instituto de Astrofísica de Canarias (IAC) ha descubierto que la estructura química de los planetas de tipo terrestre puede ser muy diferente de la composición básica de la Tierra, lo que tendría un gran impacto en la existencia y la formación de las biosferas.

Es decir, según el trabajo que acaba de publicar la revista The Astrophysical Journal Letters en su versión digital, y cuya edición impresa aparecerá el próximo día uno de marzo, no todos los planetas semejantes a la Tierra presentan las condiciones necesarias para que exista vida en ellos.

El investigador del IAC que dirige el proyecto, Garik Israelian, explica: “Probablemente hay miles de millones de planetas como la Tierra en el universo, pero una gran mayoría de ellos podrían tener una estructura interna y atmosférica completamente distinta. La formación de planetas en entornos químicos no solares, muy comunes en el universo, puede dar lugar a la formación de mundos extraños, ¡muy diferentes de la Tierra!”.

Aspectos fundamentales para la vida

Estudiar las abundancias químicas en la fotosfera de las estrellas (superficie luminosa que las delimita, de la que viene la luz que vemos y de donde emana su radiación) constituye la clave para entender cómo y cuáles de las nubes protoplanetarias forman planetas o no.

Estos estudios también sirven para investigar la composición y estructura tanto interna como atmosférica de los planetas extrasolares. Son importantes a su vez para elaborar modelos de formación y evolución planetaria.

Los elementos fundamentales para que aparezcan moléculas orgánicas y vida en un planeta son el carbono, el oxígeno, el nitrógeno y el hidrógeno. Para la formación de un planeta como la Tierra también sería necesario contar con hierro, silicio y magnesio, además de azufre, calcio, etc.

Esquema de la mayor parte de la composición química de uno de los planetas gemelos de la Tierra, en el sistema 55Cnc.El gemelo, en definitiva, poco se parece a la Tierra. Imagen: Garik Israelian/Jade Carter-Bond. Fuente: IAC.
Esquema de la mayor parte de la composición química de uno de los planetas gemelos de la Tierra, en el sistema 55Cnc.El gemelo, en definitiva, poco se parece a la Tierra. Imagen: Garik Israelian/Jade Carter-Bond. Fuente: IAC.
Por último, no hay que olvidar que para la generación de calor en el interior de la tierra son muy importantes los elementos radiactivos, como el uranio 235 y 238, el torio 232 y el potasio 40. Los elementos radiactivos son los más inestables de la tabla periódica y al desintegrarse producen calor.

Existen estudios teóricos que sugieren que las proporciones de carbono/oxígeno y magnesio/silicio son las más importantes para determinar la mineralogía de los planetas de tipo terrestre, dado que suministran una información valiosa sobre la composición de estos planetas.

En este campo de investigación extremadamente joven, con muy pocos trabajos publicados, el equipo de Jade Carter-Bond, del Planetary Science Institute, realizó en 2010 las primeras simulaciones numéricas de formación de planetas que tenían en cuenta la composición química de la nube protoplanetaria.

Sistemas diferentes al del Sol

Desde el IAC, donde se proporcionan datos observacionales y se discuten los resultados de los modelos teóricos, el equipo encabezado por la investigadora Elisa Delgado Mena, del Centro de Astrofísica de la Universidad de Oporto, desarrolló el primer estudio uniforme detallado de las abundancias de carbono, oxígeno, magnesio y silicio en 61 estrellas con planetas y 270 estrellas sin planetas.

En este trabajo se encontraron cocientes mineralógicos muy diferentes a los del Sol mostrando que hay una gran variedad de sistemas planetarios que no son similares a nuestro Sistema Solar. Muchas de las estrellas con planetas presentaban un valor de magnesio/silicio menor que 1, por lo que sus planetas tendrán un gran contenido extra de silicio.

“La cantidad de elementos radiactivos y algunos refractarios, especialmente el silicio, puede tener graves implicaciones para ciertos procesos planetarios como la tectónica de placas o la actividad volcánica”, señala Israelian. El magma rico en silicio es más viscoso, lo que haría las erupciones volcánicas más explosivas.

Las últimas simulaciones numéricas han mostrado una gran diversidad en las composiciones básicas de los planetas de tipo terrestre que podrían existir en los sistemas planetarios estudiados. Los planetas simulados en sistemas con un cociente magnesio/silicio menor que 1 resultaron ser deficientes en magnesio en comparación con la Tierra, con silicatos como piroxeno y varios feldespatos. Las abundancias de carbono de los planetas simulados también varían en concordancia con el valor de carbono/oxígeno de sus estrellas progenitoras.

Planetas donde no puede haber vida

Para Delgado Mena, “a la hora de buscar planetas habitables, sería muy útil un estudio previo de las abundancias químicas de los sistemas planetarios, ya que podríamos descartar ciertos tipos de planetas en los que la formación de vida sería muy improbable, como aquellos ricos en carbono, dominados por especies como dominados por especies como el grafito o los carburos de silicio o de titanio”.

Los compuestos ricos en carbono son muy refractarios, lo que significa que solidifican a muy alta temperatura. Cuando el disco gaseoso protoplanetario alrededor de una estrella se está enfriando, estos elementos son los primeros en solidificar muy cerca de la estrella, donde es muy improbable que exista agua en forma de hielo (uno de los indicios de la vida), aunque no se puede descartar la adición de agua mediante cometas en fases más tardías.

Gracias a las simulaciones de sistemas planetarios, también se ha visto que los planetas más interiores, situados hasta una distancia de 0,5 unidades astronómicas (UA) de su estrella, [una unidad astronómica es aproximadamente igual a la distancia media entre la Tierra y el Sol] contienen una cantidad significativa de los elementos refractarios aluminio y calcio: un 47% de la masa planetaria. En cambio, los planetas que se forman más allá de 5 UA disminuyen progresivamente su cantidad de aluminio y calcio según se va incrementando la distancia.

Todos los planetas gemelos a la Tierra considerados en este trabajo tienen composiciones dominadas por el oxígeno, el hierro, el magnesio y el silicio, con la mayoría de estos elementos depositados en forma de silicatos o metales, como el hierro.

Otro de los miembros del equipo, el astrofísico del IAC Jonay González Hernández, resume la labor del grupo en la actualidad: “Estamos trabajando para disminuir los errores en la determinación de abundancias y hacer que los resultados de los modelos teóricos y las simulaciones numéricas sean más fiables, pero todavía queda mucho trabajo por hacer”.


Martes, 28 de Febrero 2012
Instituto Astrofísico de Canarias
Artículo leído 5950 veces



Nota



Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.

Otros artículos de esta misma sección
< >

Viernes, 9 de Diciembre 2016 - 10:00 El ritmo de la respiración afecta a la memoria