Tendencias 21. Ciencia, tecnología, sociedad y cultura



Tendencias 21. Ciencia, tecnología, sociedad y cultura




La acumulación de neuronas muertas en el cerebro agrava las enfermedades mentales

Se produce cuando la microglía no elimina la "basura" como hace normalmente, lo que desencadena la inflamación cerebral


Un grupo internacional de científicos ha investigado por primera vez cómo funciona el proceso de fagocitosis que llevan a cabo las células “detectoras de la basura cerebral”: la microglía. Han descubierto que, tras producirse muerte o lesión neuronal en cerebros enfermos, estas células se vuelven “ciegas” y no son capaces de realizar su función. Esto desencadena una respuesta inflamatoria que agrava la lesión cerebral sufrida. Por Anabel Paramá.


Anabel Paramá Díaz
Dra. en Biología y Directora del Centro de Edición y Análisis `Gallaecia´-CEASGA Saber más del autor


En esta imagen de microscopía se pueden apreciar neuronas (en verde) y la microglía con sus largas ramificaciones (rojo). Fuente: Universidad del País Vasco.
En esta imagen de microscopía se pueden apreciar neuronas (en verde) y la microglía con sus largas ramificaciones (rojo). Fuente: Universidad del País Vasco.
Cuando nos hablan de células muertas, inmediatamente pensamos en las células de la piel. Éste es un proceso que no nos resulta extraño. Las células de nuestra piel mueren y, para evitar su acumulación, nos aconsejan una serie de procedimientos sencillos. Sin embargo, debemos ser conscientes de que en nuestro organismo, las células de la piel no son las únicas que mueren.
 
Las neuronas del cerebro también lo hacen. Sabemos que estas células mueren tras completar su ciclo natural de vida, por envejecimiento, o debido a lesiones cerebrales traumáticas y enfermedades neurodegenerativas. Pero, ¿nos hemos planteado alguna vez qué ocurre con ellas después de muertas? ¿Cómo puede eliminarlas nuestro organismo ? O, si no son eliminadas, ¿qué sucede entonces?
 
Ahora equipo multidisciplinar de investigadores ha estudiado por vez primera los procesos de muerte neuronal y de fagocitosis o eliminación de neuronas muertas, llevado a cabo por la microglía de cerebros enfermos. En su estudio describen el funcionamiento de los mecanismos de limpieza del cerebro cuando los pacientes sufren enfermedades neurodegenerativas, concretamente epilepsia.
 
Para llevar a cabo el estudio, publicado en la revista PloS Biology, los científicos recogieron muestras de cerebro de pacientes que padecían epilepsia, así como de ratones epilépticos.
 
Los resultados mostraron que las células de la microglía presentaban un comportamiento anómalo, y eran incapaces de eliminar las neuronas muertas. En consecuencia, estas neuronas se acumulan como residuos y provocan el desencadenamiento de una respuesta inflamatoria que empeora la lesión cerebral.
 
Microglía y enfermedades neurodegenerativas
 
La muerte de neuronas es un proceso natural de envejecimiento que ocurre en el desarrollo normal del sistema nervioso de todos nosotros. Un fenómeno neuronal al que estamos abocados todos los seres humanos.
 
En condiciones normales, la eliminación de esta “basura” cerebral permite que el tejido cerebral próximo no sufra ningún tipo de alteración y pueda seguir funcionando de forma adecuada. Este proceso de eliminación se denomina fagocitosis, y las encargadas de realizarlo son las llamadas células de la microglía, que elaboran la primera reacción inmune natural del cerebro, crucial para preservar la integridad del sistema nervioso.
 
La fagocitosis, por lo tanto, es un proceso esencial para mantener la homeostasis ante un gran número de enfermedades inflamatorias y autoinmunes. Pero su papel en el cerebro está poco estudiado.
 
Las células de la microglía están continuamente analizando su medio. Presentan una gran cantidad de ramificaciones que están en constante movimiento por todo el cerebro. Gracias a esta particularidad, cuando se produce un daño en el sistema nervioso, reaccionan y migran hacia la zona en cuestión.
 
Una vez allí, repararan el tejido liberando diferentes componentes que permiten eliminar elementos extraños, no deseados o dañados, mediante la fagocitosis. Sin embargo, estos componentes, en algunas ocasiones, pueden afectar a las neuronas sanas y provocar una eliminación excesiva e innecesaria de neuronas. Esto, que ocurre en enfermedades como el Parkinson y el Alzheimer, origina un ambiente patológico.
 
Al menos, esto era lo que se creía que ocurría, pues se presuponía la eficacia de la microglía como recolectoras y destructoras (fagocitos) de residuos, también en cerebros enfermos.
 
Sin embargo, la nueva investigación señala que puede ocurrir todo lo contrario, es decir que, en cerebros enfermos o lesionados, la microglía no elimine neuronas muertas que sí debrían de ser eliminadas para evitar una respuesta inflamatoria del cerebro. Este hecho tendría una grave repercusión patológica.

El experimento
 
Para comprobar si la microglía se comportaba como fagocitos eficaces en un cerebro enfermo, el equipo de investigación, dirigido por la Dra. Amanda Sierra, directora del laboratorio de Biología Celular Glial del Achucarro Basque Center for Neuroscience (País Vasco), indujo experimentalmente una serie de procesos apoptóticos (que inducen a las células a morir cuando están dañadas).
 
Con la inducción de estos procesos se observó cómo respondía la microglía, de una forma generalizada. Lo que hacían estas células era establecer diferentes estrategias que mejorasen su eficacia fagocítica. Es decir, aumentaban su capacidad de captación de la “basura celular”.
 
De esta manera, en caso de generarse un incremento de células apoptóticas (células dañadas que están programadas para morir y evitar enfermedades como el cáncer), la microglía era capaz de mantener una relación adecuada y equilibrada entre la apoptosis y la fagocitosis.
 
Sin embargo, la sorpresa llegó cuando estudiaron muestras de cerebro extraídas de personas que padecían epilepsia y de ratones epilépticos, desarrollados experimentalmente. En estos casos, se detectó que la relación existente en condiciones normales entre la apoptosis y la fagocitosis de la microglía se perdía de forma crónica.

Este trabajo ha sido el primero en cuantificar el proceso de fagocitosis en el cerebro de personas enfermas de epilepsia.
 
El descubrimiento
 
Así que, en el caso de pacientes con epilepsia, la microglía no actúa, digamos que “está ciega”. Por eso no logra detectar las neuronas muertas, y éstas no pueden ser eliminadas ni destruidas, lo que tiene consecuencias nefastas para el paciente.
 
La inactividad de la microglía hace que la fagocitosis no se lleve a cabo, lo que conlleva que se produzca una enorme acumulación de neuronas muertas en el cerebro. Un acúmulo excesivo de residuos que, al igual que la basura en los basureros, comienza a descomponerse.
 
En las neuronas muertas, la membrana se va haciendo cada vez más permeable, lo que permite la liberación de compuestos tóxicos presentes en su interior. Esos compuestos dañan a las neuronas vecinas, lo que provoca una respuesta inflamatoria del cerebro que lo daña todavía más.
 
En el caso concreto de la epilepsia, se sabe que, en algunas ocasiones y durante las convulsiones, las neuronas mueren. Así que el hecho de que la fagocitosis no se realice favorece la inflamación producida en el cerebro. Esto fomenta la aparición de crisis epilépticas, caracterizadas por las impactantes convulsiones.
 
En un futuro
 
Este hallazgo abre vías para el desarrollo de nuevas terapias que permitan paliar los efectos de las enfermedades cerebrales, terapias que “enseñen” a la microglía a mejorar su eficacia para la correcta eliminación de neuronas muertas.
 
De hecho, el equipo de investigación está ya trabajando en el desarrollo de fármacos que promuevan este proceso de limpieza, es decir, que en condiciones lesionadas activen el proceso de fagocitosis. Esto permitiría ayudar en los tratamientos de enfermedades como la epilepsia.

Referencia bibliográfica:
 
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, y col. Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biology (2016). DOI:10.1371/journal.pbio.1002466.


Lunes, 6 de Junio 2016
Artículo leído 25036 veces


Nota




Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.

Otros artículos de esta misma sección
< >

Viernes, 22 de Septiembre 2017 - 12:00 Las granjas fortalecen el sistema inmunitario en los niños

Miércoles, 20 de Septiembre 2017 - 09:00 Las bacterias se comportan como miembros de un ecosistema