Tendencias21
La dirección del tiempo se vuelve confusa a escala de una sola molécula

La dirección del tiempo se vuelve confusa a escala de una sola molécula

La dirección del tiempo se vuelve confusa e indefinida a escala de una sola molécula, según una nueva investigación que ha analizado el flujo del tiempo en procesos en los que la entropía no es continua. Esta investigación ha determinado que, aunque la entropía general se incremente como media a nivel microscópico, esto no sucede así en cada uno de los momentos del experimento, es decir, que no siempre el tiempo tiene una dirección definida: del pasado al presente, del presente al futuro. Por Yaiza Martínez.

La dirección del tiempo se vuelve confusa a escala de una sola molécula

El concepto de tiempo es para nosotros muy intuitivo, y fácilmente distinguimos el pasado del presente o del futuro. No ha sido tan sencillo para los pensadores. En la Edad Antigua ya encontramos las primeras reflexiones humanas sobre el tiempo. Platón, por ejemplo, decía que el tiempo es la imagen móvil de la eternidad. Posteriormente, Newton lo describió como algo absoluto, verdadero y matemático, que transcurre uniformemente. En los años veinte del siglo pasado, Einstein llegó a considerarlo como una mera ilusión.

Estas ideas reflejan la inmensa complejidad que supone el tiempo, tema que ha sido objeto de reflexión para muchos filósofos y de investigación para muchos científicos. Son precisamente los científicos los que, ahora, tratan de solventar el hecho de que la ciencia aún no proporcione una definición clara de lo que es el tiempo.

Edward Feng, ingeniero químico de la Universidad de California en Berkeley, y Gavin Crooks, físico del Lawrence Berkeley National Laboratory explican en un artículo aparecido en la revista Physical Review Letters que “las teorías fundamentales de la física –la mecánica clásica, la electrodinámica, la mecánica cuántica, la relatividad general, etc.- son simétricas al respecto de la inversión del tiempo”(esto es, que el pasado, el presente y el futuro no difieren para ellas).

Según Crooks y Feng, “la única teoría científica fundamental que marca una dirección preferente para el tiempo es la de la segunda ley de la termodinámica, que asevera que la entropía del Universo aumenta a medida que el tiempo fluye hacia el futuro (la entropía es la cantidad de energía no disponible de un sistema)”.

Procesos sin vuelta atrás

Esta explicación proporciona una orientación, una flecha del tiempo. Nuestra percepción de éste sería, por tanto, una consecuencia directa de la flecha temporal termodinámica.

A grandes rasgos, la termodinámica es una rama de la física que estudia los efectos de la temperatura, presión y volumen de los sistemas físicos a un nivel macroscópico. La cantidad de entropía de cualquier sistema aislado termodinámicamente tiende a aumentar con el tiempo. Por ejemplo, una gota de tinta dispersada en el agua no dará «marcha atrás» en su movimiento y no volverá a recogerse en su volumen inicial.

En definitiva, el tiempo tiene para esta ley una orientación definida. Según los científicos, que la entropía del universo aumente con el tiempo supone que existe una dirección, una flecha del tiempo, una asimetría temporal (que permite distinguir el pasado del futuro: la gota de tinta en su volumen inicial y la gota de tinta dispersada en agua) que se corresponde con nuestra propia percepción del tiempo.

Entropía a nivel microscópico

Esto está claro a nivel macroscópico. Tal y como ejemplariza la revista Physorg.com, cuando se derrama un vaso de leche, la asimetría temporal es obvia para cualquier observador: primero el vaso estaba lleno de leche y después vacío.

Sin embargo, a escala microscópica, dado que la cantidad de energía implicada en los procesos es tan pequeña, resulta más difícil afirmar que la entropía está aumentando, y que por lo tanto el tiempo se mueve “hacia delante” (hacia el futuro), en lugar de hacia atrás (hacia el pasado).

Feng y Crooks afirman haber creado un método para medir con exactitud la asimetría temporal de lo microscópico. De hecho han comprobado que, a escala microscópica y durante algunos intervalos, la entropía puede disminuir realmente. Y que, aunque la entropía general se incremente como media, en cada uno de los momentos del experimento esto no sucede, es decir, que no siempre el tiempo tiene una dirección clara: del pasado al presente, del presente al futuro.

Para estudiar el tiempo a escala minúscula, los científicos empezaron investigando el incremento de la disipación de energía (entropía) en diversas distribuciones. Y descubrieron que, durante algunos intervalos, la entropía realmente se reducía.

Incluso aunque existiese un aumento medio de la entropía, la dirección del tiempo no resultó evidente en cada momento del experimento, es decir, que la asimetría temporal no estaba asegurada, sino que algunas disposiciones presentaron un tiempo simétrico (que no diferencia el presente del pasado o el futuro). «Mientras el tiempo avanza descaradamente en el mundo macroscópico, la dirección del tiempo se vuelve confusa a escala de una única molécula», resumió Feng.

Posibles aplicaciones

Además del interés teórico que sin duda tiene esta investigación, el método ideado por Feng y Crooks podría tener otras aplicaciones, como calcular las diferencias de energía libre en experimentos con sistemas alejados del equilibrio.

Los científicos explican que comprender la relación entre la asimetría temporal y la entropía también resultaría crucial para el desarrollo de futuras máquinas moleculares. «Nuestra definición resalta esta peculiaridad. Esperamos que esto sirva a los científicos a la hora de estudiar moléculas biológicas”, señala Feng.

Yaiza Martinez

Hacer un comentario

RSS Lo último de Tendencias21

  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente
  • La Inteligencia Artificial puede ser envenenada para proteger los derechos de autor 12 abril, 2024
    Una herramienta llamada Nightshade cambia imágenes digitales de manera casi imperceptible para el ojo humano, pero que se ven totalmente diferentes por los modelos de IA: una forma polémica de proteger las obras de arte de posibles infracciones de derechos de autor.
    Redacción T21
  • La acidez cerebral podría estar relacionada con múltiples trastornos neurológicos 11 abril, 2024
    Un estudio en animales a gran escala vincula los cambios en el pH del cerebro con problemas cognitivos de amplio alcance, ligados a patologías como el autismo o el Alzheimer, entre otras. Los científicos creen que los problemas metabólicos en el cerebro podrían estar directamente relacionados con una variedad de trastornos neuropsiquiátricos y neurodegenerativos.
    Pablo Javier Piacente
  • Cultivan organoides cerebrales con conexiones neuronales similares a las de un cerebro real 11 abril, 2024
    Un equipo internacional de investigadores ha desarrollado una técnica para conectar tejidos cultivados en laboratorio que imitan al cerebro humano de una manera que se asemeja a los circuitos neuronales del cerebro real. El "sistema" de mini cerebros interconectados podría revolucionar nuestra comprensión de las funciones cerebrales.
    Pablo Javier Piacente
  • Los Estados se exponen a condenas judiciales por inacción climática 11 abril, 2024
    Suiza es el primer Estado condenado judicialmente por no resolver el desafío climático y violar los derechos humanos de las personas mayores. Hace un año, 16 niños y jóvenes obtuvieron una sentencia condenatoria contra el Estado de Montana por destruir con sus leyes el medioambiente. Cualquier Estado puede ser denunciado si no preserva el ambiente en […]
    Eduardo Martínez de la Fe
  • Detectan extraños pulsos de radio procedentes de un magnetar que desconciertan a los científicos 10 abril, 2024
    Los astrónomos han detectado señales de radio inusuales procedentes de XTE J1810-197, un radiomagnetar o estrella de neutrones ultramagnética situada a 8.100 años luz de distancia de la Tierra, en la constelación de Sagitario. Los resultados son inesperados y sin precedentes: a diferencia de las señales de radio que se han detectado en otros magnetares, […]
    Pablo Javier Piacente
  • La IA podría ser el límite para todas las civilizaciones avanzadas en el Universo 10 abril, 2024
    Un nuevo estudio sugiere que el desarrollo de la Inteligencia Artificial (IA) hacia una Superinteligencia Artificial (ASI) podría explicar por qué no hemos detectado aún otras civilizaciones avanzadas en el cosmos, a pesar de la alta probabilidad de su existencia: en vez de supernovas, plagas, guerras nucleares o eventos climáticos extremos que hayan sido un […]
    Pablo Javier Piacente
  • Higgs ha podido dejar abierta la puerta a la Nueva Física con su legado 10 abril, 2024
    La muerte de Peter Higgs, que pasará a la historia como el descubridor del bosón que explica cómo se forma la materia, deja un legado en la historia de la física que todavía puede aportar algo más trascendente: la prueba definitiva de una Nueva Física más allá del Modelo Estándar.
    Eduardo Martínez de la Fe