Tendencias 21. Ciencia, tecnología, sociedad y cultura




La diversidad molecular sería la clave de la inteligencia

Un estudio británico desvela la lógica subyacente a la complejidad de nuestro cerebro


La inteligencia no depende únicamente del tamaño del cerebro o del total de neuronas que contenga, sino también de la diversidad molecular en la composición de las sinapsis, según una investigación desarrollada por científicos británicos. El estudio de 600 proteínas presentes en las sinapsis de los vertebrados permitió descubrir que las sinapsis de los invertebrados sólo contaban con la mitad de ellas. Según los investigadores, esto significaría que existe una gran diferencia en el número de proteínas de las conexiones neuronales de las distintas especies, y que dicha diferencia sería lo que establecería el grado de capacidad de aprendizaje y de memoria. Por Yaiza Martínez.


Yaiza Martínez
Escritora, periodista, y Directora de Tendencias21. Saber más del autor



La relación entre el número de célucas nerviosas en el cerebro de los animales y el número de proteínas sinápticas marca la diferencia entre especies. Fuente: Wellcome Trust Sanger Institute.
La relación entre el número de célucas nerviosas en el cerebro de los animales y el número de proteínas sinápticas marca la diferencia entre especies. Fuente: Wellcome Trust Sanger Institute.
Una investigación llevada a cabo en el Reino Unido, y de la que se ha hecho eco la revista Nature Neuroscience, ha descubierto que la inteligencia no depende únicamente del tamaño del cerebro o del total de neuronas que contenga, sino también de la diversidad molecular en la composición de las sinapsis entre las neuronas.

Las sinapsis son las uniones especializadas mediante las cuales las células del sistema nervioso se envían señales eléctricas entre ellas. Pero las sinapsis no son sólo simples “enlaces”, sino que funcionan como mini procesadores que permiten al sistema nervioso aprender y recordar.

La eficacia de las estructuras del cerebro humano no sería fruto, por tanto, sólo de su tamaño, sino que tendría su origen en los cada vez más sofisticados procesamientos moleculares de los impulsos nerviosos, que han permitido el desarrollo de animales con comportamientos progresivamente más complejos.

Esta investigación ha sido realizada dentro del Genes to Cognition Programe del Wellcome Trust Sanger Institute del Reino Unido, en colaboración con las universidades de Edimburgo y de Keele. Fue dirigida por Seth Grant, director de dicho programa de investigación.

Las proteínas marcan la diferencia

Según explica el Wellcome Trust Sanger Institute en un comunicado, el estudio de Grant y sus colaboradores ilustra cómo ha sido la evolución molecular del cerebro. Demuestra que ha habido dos oleadas de sofisticación aumentada (la primera hace algunos miles de millones de años y la segunda hace alrededor de unos 500 millones de años) en la estructura de los enlaces entre los nervios, que podrían ser el impulso que permitió evolucionar a los cerebros complejos, entre los que se incluye el de los humanos.

El número y complejidad de las proteínas habrían explosionado con la aparición de los animales moleculares. La segunda oleada habría ocurrido con la emergencia de los vertebrados. Las proteínas características de los vertebrados serían las que les habrían otorgado un abanico más amplio de comportamientos, incluyendo las funciones mentales más avanzadas.

Hasta ahora se ha creido que los componentes proteínicos de las conexiones nerviosas (de las sinapsis) son similares en la mayoría de los animales –desde los gusanos hasta los humanos-, y que es el aumento en el número de sinapsis en los animales más avanzados lo que permite pensamientos más sofisticados.

Según declaró Grant en dicho comunicado, la cantidad mayor o menor de nervios no es suficiente para explicar una potencia cerebral mayor. Según la investigación realizada por el científico y su equipo, la causa del grado de dicha potencia estaría en “la dramática diferencia que existe, entre las diversas especies, en el número de proteínas de sus conexiones neuronales”.

Modelo novedoso del cerebro

Los científicos señalan que este descubrimiento conllevaría a un modelo novedoso y simple que serviría para comprender los orígenes y la diversidad del cerebro y del comportamiento de todas las especies. Según los investigadores, se habría dado un paso adelante hacia la comprensión de la “lógica” subyacente a la complejidad de nuestro cerebro.

Para llegar a sus conclusiones, Grant y sus colaboradores estudiaron alrededor de 600 proteínas halladas en las sinapsis de los mamíferos. Posteriormente, y para su sorpresa, descubrieron que sólo un 50% de estas proteínas también se encuentran en las sinapsis de los invertebrados, y tan sólo el 25% de ellas en los animales unicelulares, que no tienen cerebro.

Por otro lado, la investigación demostró que algunas de estas proteínas implicadas en la emisión de las señales sinápticas, en el aprendizaje y en la memoria, se encuentran en la levadura, que es un hongo microscópico unicelular. En ella, las proteínas actúan respondiendo a señales recibidas del medio, generando tensión por la escasez de comida o por cambios en la temperatura.

Según Grant, “el conjunto de proteínas hallado en los animales unicelulares representa la antigua “protosinapsis” implicada en comportamientos simples”. Este conjunto de proteínas fue mejorado por la adición de nuevas proteínas con la evolución de invertebrados y vertebrados, y este hecho contribuyó al desarrollo de comportamientos más complejos en estos animales.

Como los chips

Uno de los principales logros obtenidos por los investigadores fue el de aislar, por vez primera, las proteínas de las sinapsis del cerebro de las moscas, lo que confirmó que los invertebrados poseen un conjunto más simple de proteínas que los vertebrados.

En el caso de los humanos, los científicos descubrieron que la expansión en las proteínas que se produjo en los vertebrados propició que éstas fueran utilizadas en la formación de las diferentes partes de nuestro cerebro, particularmente de las regiones especializadas, como la corteza cerebral o la médula espinal.

Según Grant, la evolución molecular de las sinapsis supondría un proceso similar al de la evolución de los chips informáticos: el incremento de la complejidad ha aumentado en ellos su potencia de procesamiento. Por tanto, animales con los “chips” más potentes pueden hacer mayor cantidad de cosas.

Así, las especies de invertebrados simples presentan un conjunto de formas sencillas de aprendizaje propiciadas por sinapsis molecularmente simples. Por el contrario, las especies de mamíferos muestran un amplio abanico de modos de aprendizaje, que son permitidos por sinapsis molecularmente muy complejas.

La evolución animal ha generado una amplísima gama de especies que incluyen desde los animales unicelulares a los multicelulares (invertebrados y vertebrados). En ellos, las sinapsis que forman las uniones entre sus células nerviosas están compuestas de muchas proteínas organizadas juntas en forma de procesadores de señales moleculares. De estas proteínas dependen tanto las funciones fisiológicas como el aprendizaje y la memoria de cada individuo.


Sábado, 12 de Julio 2008
Artículo leído 29910 veces



Nota



Comente este artículo

1.Publicado por alvaro gonzales el 13/07/2008 00:42
son las proteínas que produce el cuerpo humano, con las que se creo, o las que ingiere para su funcionamiento... no me queda claro???

2.Publicado por Soria Velasco el 16/07/2008 03:06
Aproximadamente cada cien años erupciona el vocan tungurahua durante periodos de 15 o mas, y la agricultura de la áreas colindantes emerge con gran feracidad. Varios profesores de colegios han notado que cada cierto tiempo nacen en el sector generaciones o al menos muchos individuos con gran inteligencia, especialmente de las madres que consumen variedad de alimentos cultivados en areas que reciben ceniza de las erupciones.
¿Cómo se podria demostrar que hay una correlación entre la diversidad de la composición del suelo y la inteligencia de los individuos que se alimentan de los cultivos en ese suelo?

3.Publicado por Jose Duguet el 17/07/2008 03:54
Dentro del sistema neuronal hay enzimas que son producidas por el cuerpo en diferente cantidades, y algunas que deben manetnerse en el tiempo ya que disminuyen su tasa de prooduccion, mi duda es... es posible relacionar la complejidad neuro-proteica con la regulacion genica de las proteinas y la dieta? si estas enzimas se encuentran con falta de sustrato, que ocurre con la complejidad de aprendizaje? es posible relacionar la variabilidad nutricional (de los omnivoros, por ejemplo) con la inteligencia?

Asi como producto dela recombinacion genetica de obtiene mayor variabilidad de genotipos y como consecuencia nuevas proteinas con mayor funcionalidad sinaptica por seleccion natural, sin embargo llegaremos a un punto donde paradojicamente por la misma seleccion se llegara un genotipo.. podria esto indicar el limite de maxima inteligencia a la que podria llegar el ser humano?

4.Publicado por Luchetti el 18/07/2008 20:46



Diversidad molecular y concentración:



Un experto en una tarea que constituye su especialidad, por ejemplo, un músico,
hace, a través de una correcta concentración, que su sistema neural produzca moléculas que "ajustan" y "filtran" la capacidad del oído en la dirección buscada. La producción
cerebral-molecular aumenta mediante el entrenamiento y la práctica. Así, se logran
aproximaciones hacia las metas y el acrecentamiento del talento. La intención sumada
a la atención dirigida de un modo conciente, modifica el estado molecular y crea las
proteínas necesarias para alcanzar las metas. Chau, gracias.

5.Publicado por Mansilla Velasco el 20/07/2008 04:58
Se ha observado que la desnutrición influye en los problemas de aprendizaje, es posible que la falta de proteinas en el cuerpo modifique el estado molecular .

6.Publicado por Sandoval vásquez Álvaro el 27/07/2008 22:08
mmm cuales son las proteínas??

7.Publicado por Juan Díaz Núñez el 28/09/2008 04:01
MUY INTERESANTE EL ARTICULO.....Pero, una pregunta: ¿qué sucede en la sinapsis de las
llamadas "neuronas en espejo"? ¿Son proteinas muy específicas para cada TIPO de neurona?
Y segundo, ¿que pasa con los ritmos y ciclos cerebrales, cómo se ven afectados por la actividad
molecular de esas proteinas? Como vemos, la neurociencia esta dando sus primeros pasos, a menos, claro, que mucha información este siendo reservada. Gracias.

Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.

Otros artículos de esta misma sección
< >