Tendencias21
Núcleos atómicos con forma de pera ayudan a explicar el origen del universo

Núcleos atómicos con forma de pera ayudan a explicar el origen del universo

El hallazgo de unos núcleos atómicos con “forma de pera” (en teoría, todos deberían ser esféricos o elípticos) podría impulsar la búsqueda de una nueva fuerza fundamental en la naturaleza, más allá de las cuatro fuerzas ya definidas por el Modelo Estándar. Esta “nueva” fuerza, afirman los científicos, podría explicar porqué cuando se produjo el Big Bang –la gran explosión que dio origen al cosmos- se creó más materia que antimateria y, por tanto, fueron posibles todas las cosas. Por Yaiza Martínez.

Núcleos atómicos con forma de pera ayudan a explicar el origen del universo

Un equipo internacional de físicos ha descubierto la primera evidencia de núcleos atómicos con forma de pera –en lugar de esféricos o elípticos como suelen ser- en lo que se denomina “átomos exóticos”, que son átomos cuyas partículas –electrones y/o protones- han sido sustituidas por otras distintas.

Estos átomos son altamente inestables, por lo que su vida media es extremadamente corta. Aún así, los investigadores lograron observar sus núcleos.

Los investigadores creen que el hallazgo podría impulsar la búsqueda de una nueva fuerza fundamental en la naturaleza (en la actualidad, hay definidas cuatro fuerzas de este tipo).

Esta “nueva fuerza”, a su vez, podría explicar por qué en el momento del Big Bang‎ o gran explosión que dio inicio al cosmos se creó más materia que antimateria: un desequilibrio esencial en la historia de todas las cosas.

En física de partículas, la antimateria es una forma de materia, aunque menos frecuente, compuesta de antipartículas, que son como la “imagen en el espejo” de las partículas subatómicas: poseen la misma masa y espín que estas, pero distinta carga eléctrica. Así, por ejemplo, la antipartícula de electrón sería el antielectrón o positrón, idéntico al primero, pero con una carga eléctrica contraria.

En general, la antimateria es una auténtica rareza dentro del universo conocido. Además, tiene una existencia breve, que se desarrolla en los rayos cósmicos, las llamaradas solares o en el interior de aceleradores de partículas, como el Gran Colisionador de Hadrones (LHC) del CERN.

¿Una nueva fuerza fundamental?

Si, cuando se produjo el Big Bang, “se hubiese creado la misma cantidad de materia que de antimateria, todo habría quedado aniquilado, y no habría galaxias, estrellas, planetas o gente”, afirma Tim Chupp, un profesor de física de la Universidad de Michigan (EEUU) y co-autor de un artículo sobre esta investigación publicado por Nature, en un comunicado de dicha Universidad. La razón: el contacto entre la materia y la antimateria ocasionaría su aniquilación mutua.

¿Qué causó el desequilibrio entre materia y antimateria gracias al cual sí existe nuestro universo? Este es uno de los grandes misterios de la física, tan grande que ni siquiera lo recoge el llamado Modelo Estándar, que es la teoría general que describe las leyes de la naturaleza y la naturaleza de la materia.

Dicho Modelo describe cuatro fuerzas o interacciones fundamentales que rigen el comportamiento de la materia: la gravedad (que atrae a los cuerpos masivos entre sí); la interacción electromagnética, que origina las fuerzas en los cuerpos eléctricamente cargados; y las fuerzas fuerte y débil, que operan en los núcleos atómicos, aglomerando partículas o haciendo que estas decaigan en partículas mas livianas.

Pero los físicos llevan tiempo buscando signos de esa otra fuerza o interacción que podría explicar el desequilibrio inicial entre materia y antimateria en el cosmos.

Los autores de la presente investigación pensaron que la evidencia de la existencia de dicha fuerza podría encontrarse midiendo la forma en que el eje de los núcleos atómicos de elementos radiactivos -como el radón y el radio- se alinea con el espín o momento angular intrínseco de cada átomo.

Forma de pera y asimetría originaria

En el análisis de dichos núcleos, descubrieron que estos tienen forma de pera, en lugar de los más típicos perfiles de los núcleos atómicos, esféricos o elípticos. Esta forma de pera hizo que los efectos de esta “otra” fuerza resultasen mucho más fuertes y más fáciles de detectar.

Sobre esta forma nuclear, que Chupp describe como «especial», el físico explica que: «Supone que los neutrones y los protones que componen el núcleo se encuentran en lugares ligeramente diferentes a lo largo de un eje interno».

Más concretamente: los núcleos con forma de pera serían asimétricos porque los protones (partículas con carga positivas) de su interior serían alejados del centro del núcleo por fuerzas nucleares, fundamentalmente diferentes a las fuerzas de simetría esférica ya conocidas, como la gravedad.

«Esta nueva interacción (que aleja a los protones del centro nuclear), cuyos efectos estamos estudiando, actúa de dos maneras», añade Chupp: Por una parte habría producido “la asimetría materia / antimateria en el universo temprano” y, por otra, “alinearía la dirección del espín con el eje de la carga, en estos núcleos».

Leyendo en los rayos gamma

Para determinar la forma de los núcleos atómicos del radón y del radio, los investigadores produjeron haces de átomos exóticos de corta duración, en el Separador de Isótopos del CERN (Organización Europea para la Investigación Nuclear), ubicado en las instalaciones ISOLDE.

Estos haces fueron acelerados y destruidos haciéndolos chocar con objetivos de níquel, cadmio y estaño. Sin embargo, debido a la fuerza de repulsión de los núcleos cargados positivamente, las reacciones nucleares clásicas no se produjeron.

En su lugar, los núcleos excitados alcanzaron niveles de energía muy altos y produjeron rayos gamma que se desplazaron siguiendo un patrón específico, que fue lo que reveló la forma de pera de los núcleos atómicos. Ahora, “estamos tratando de entender todo lo que hemos observado directa e indirectamente, y qué es lo que nos ha llevado hasta aquí», afirma Chupp.

Afinar o modificar teorías

Los resultados de esta investigación, dirigida por Peter Butler, profesor de física de la Universidad de Liverpool (Inglaterra), “contradicen algunas teorías sobre los núcleos atómicos, y ayudará a afinar otras”, explica Chupp.

Las mediciones ayudarán asimismo a dirigir las búsquedas de EDM atómicos (momentos dipolares eléctricos, que señalan la separación entre cargas eléctricas negativas y positivas en cualquier sistema de cargas), que se realizan actualmente en Norteamérica y Europa aprovechando las propiedades especiales de los isótopos de radón y radio. Los resultados de estas mediciones son muy importantes para la teoría estándar de la Física.

“Esperamos que los datos arrojados por nuestros experimentos de física nuclear puedan combinarse con los resultados de experimentos de medición de los EDM para desarrollar las pruebas más rigurosas sobre el Modelo Estándar, que es la mejor teoría que tenemos para comprender la naturaleza de los componentes básicos del universo”, concluye Butler.

Referencia bibliográfica:

L. P. Gaffney, P. A. Butler, M. Scheck, A. B. Hayes, F. Wenander, M. Albers, B. Bastin, C. Bauer, A. Blazhev, S. Bönig, N. Bree, J. Cederkäll, T. Chupp, D. Cline, T. E. Cocolios, T. Davinson, H. De Witte, J. Diriken, T. Grahn, A. Herzan, M. Huyse, D. G. Jenkins, D. T. Joss, N. Kesteloot, J. Konki, M. Kowalczyk, Th. Kröll, E. Kwan, R. Lutter, K. Moschner, P. Napiorkowski, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, K. Reynders, S. V. Rigby, L. M. Robledo, M. Rudigier, S. Sambi, M. Seidlitz, B. Siebeck, T. Stora, P. Thoele, P. Van Duppen, M. J. Vermeulen, M. von Schmid, D. Voulot, N. Warr, K. Wimmer, K. Wrzosek-Lipska, C. Y. Wu, M. Zielinska. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature (2013). DOI: 10.1038/nature12073.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Detectan emisiones de radio similares a auroras sobre las manchas solares 22 marzo, 2024
    Los astrónomos han observado explosiones de radio duraderas similares a auroras sobre una mancha solar: el descubrimiento podría ayudarnos a comprender mejor al Sol, así como facilitar la identificación de estrellas distantes que producen emisiones de radio similares.
    Pablo Javier Piacente
  • Descubren un material que se hace más fuerte con cada golpe 22 marzo, 2024
    Un nuevo material elástico presenta una increíble "durabilidad adaptativa": cada vez que se cae o se golpea, su fuerza se incrementa y se vuelve más difícil de romper. Podría ser de gran utilidad en futuros dispositivos electrónicos como nuevos teléfonos móviles, relojes inteligentes o tabletas, que están continuamente expuestos a todo tipo de golpes. Además, […]
    Pablo Javier Piacente
  • El Arco de Gibraltar está migrando desde el Mediterráneo hacia el Atlántico 22 marzo, 2024
    Una zona de subducción que se origina en el Mediterráneo occidental se está moviendo desde la región franco-española hacia el sur. Actualmente está a la altura de la frontera entre España y Portugal y se propaga hacia el Atlántico bajo el Estrecho de Gibraltar.
    JGU/T21
  • Antiguas canoas revelan cómo los marinos del Neolítico surcaron el Mediterráneo 21 marzo, 2024
    Una nueva investigación liderada por Juan Gibaja, del Consejo Nacional de Investigaciones Científicas (CSIC) de España, y publicada recientemente en la revista PLOS One, arroja luz sobre las primeras embarcaciones neolíticas en el Mediterráneo: las excavaciones en el pueblo de agricultores de la Edad de Piedra de La Marmotta, en Italia, han permitido recuperar cinco […]
    Pablo Javier Piacente
  • En los próximos meses, una "nueva estrella" iluminará el cielo nocturno 21 marzo, 2024
    Los científicos de la NASA han informado que durante este año el sistema estelar T Coronae Borealis podrá verse a simple vista en el cielo nocturno, luego de una violenta explosión cósmica que tendrá lugar en algún momento en los próximos seis meses. La “nueva estrella” en el cielo podrá apreciarse sin la ayuda de […]
    Pablo Javier Piacente
  • La Antártida puede perder su neutralidad y su actividad exclusivamente científica 21 marzo, 2024
    El cambio climático y la creciente demanda de recursos está sacudiendo de la Antártida como continente neutral y exclusivamente científico. La rivalidad entre potencias ha comenzado a hacerse presente en las costas antárticas.
    Eduardo Martínez de la Fe
  • Los primeros recuerdos son solo reconstrucciones mentales 21 marzo, 2024
    Lejos de ser grabaciones fidedignas de la realidad, los primeros recuerdos son más bien un mosaico compuesto por experiencias reales, narrativas familiares y reconstrucciones mentales. A medida que crecemos, este mosaico se enriquece y se transforma, pero los fragmentos de nuestra primera infancia permanecen, en gran medida, como piezas imaginadas en un rompecabezas de la […]
    Redacción T21
  • Los vínculos sociales alinean a las personas en la misma longitud de onda 20 marzo, 2024
    El vínculo social mejora el intercambio de información y sincroniza las actividades cerebrales entre el líder de un grupo y sus seguidores, colocando a todo el grupo en la misma longitud de onda cerebral, según un nuevo estudio de sincronización neuronal.
    Pablo Javier Piacente
  • Partículas desconocidas de energía oscura serían la fuerza impulsora detrás de la expansión del Universo 20 marzo, 2024
    Una nueva investigación teórica sugiere que la misteriosa energía oscura estaría compuesta por "no partículas" y podría estar ligada a la expansión del cosmos, "separando" lentamente al Universo. Esto explicaría por qué los científicos no logran comprender aún en profundidad cómo el Universo se expande de forma cada vez más acelerada. También revelaría la causa […]
    Pablo Javier Piacente
  • Las mujeres científicas lideran las investigaciones sobre la sequía 20 marzo, 2024
    Las mujeres científicas están a la vanguardia de las investigaciones sobre la sequía para preservar la producción agrícola, gestionar el agua y mitigar los efectos del calentamiento global. Sobre el terreno, están también mejor preparadas para gestionar los desastres naturales.
    Alicia Domínguez y Eduardo Costas (*)