Tendencias21

Predicen un nuevo tipo de partícula presente en ‘universos materiales’

Un equipo de investigadores de EE.UU., Suiza y China ha predicho la existencia de un nuevo tipo de partícula, llamada fermión de Weyl tipo II, en materiales metálicos de tungsteno, denominados ‘universos materiales’ por la gran variedad de partículas que presentan. Al ser sometidos a un campo magnético, los materiales que contienen la partícula actúan como aislantes para la corriente aplicada en algunas direcciones y como conductores si es aplicada en otras direcciones. Podría tener aplicaciones en dispositivos de baja energía y transistores eficientes.

Predicen un nuevo tipo de partícula presente en 'universos materiales'

Un equipo internacional de investigadores ha predicho la existencia de un nuevo tipo de partícula, llamada fermión de Weyl tipo II, en materiales metálicos. Al ser sometidos a un campo magnético, los materiales que contienen la partícula actúan como aislantes para la corriente aplicada en algunas direcciones y como conductores de corriente si es aplicada en otras direcciones.

Este comportamiento sugiere una gama de aplicaciones potenciales, desde dispositivos de baja energía a transistores eficientes.

Los investigadores teorizan que existe la partícula en un material conocido como ditelururo de tungsteno (WTe2), que los investigadores comparan a un «universo material» ya que contiene varias partículas, algunas de las cuales existen en las condiciones normales de nuestro universo y otras que puedan existir solamente en estos tipos especializados de cristales. La investigación aparece en la revista Nature esta semana.

La nueva partícula es un primo del fermión de Weyl, una de las partículas del modelo estándar. Sin embargo, las partículas de tipo II mismas exhiben respuestas muy diferentes a los campos electromagnéticos, siendo conductores casi perfectos cerca en algunas direcciones del campo y aislantes en otras.

La investigación fue dirigida por el profesor de la Universidad de Princeton (Nueva Jersey, EE.UU.) B. Andrei Bernevig, así como por Matthias Troyer y Alexey Soluyanov, de la Escuela Politécnica Federal de Zúrich (Suiza), y Xi Dai, del Instituto de Física de la Academia China de Ciencias.

La teoría

Según los investigadores, el físico Hermann Weyl no fue consciente de la existencia de esta partícula, durante el desarrollo inicial de la teoría cuántica hace 85 años, porque violaba una norma fundamental, llamada simetría de Lorentz, que no se produce en los materiales en que surge el nuevo tipo de fermión.

Las partículas de nuestro universo están descritas por la teoría cuántica de campos relativista, que combina la mecánica cuántica con la teoría de la relatividad de Einstein. Según esta teoría, los sólidos están hechos de átomos, que consisten en un núcleo rodeado de electrones. Debido a la gran cantidad de electrones que interactúan entre sí, no es posible resolver exactamente el problema del movimiento de muchos electrones en sólidos utilizando la teoría de la mecánica cuántica.

En cambio, nuestro conocimiento actual de los materiales se deriva de una perspectiva simplificada, en la cual los electrones en sólidos se describen en términos de partículas especiales que no interactúan, llamadas cuasi-partículas, que se mueven en el campo efectivo creado por entidades cargadas, llamadas iones y electrones. Estas cuasi-partículas, denominadas electrones Bloch, también son fermiones (tienen espín semi-entero).

Del mismo modo que los electrones son partículas elementales en nuestro universo, los electrones Bloch se pueden considerar las partículas elementales de un sólido. En otras palabras, el propio cristal se convierte en un «universo», con sus propias partículas elementales.

En los últimos años, los investigadores han descubierto que un «universo material» así puede albergar todas las demás partículas de la teoría cuántica de campos relativista. Tres de estas cuasi-partículas, los fermiones de Dirac, Majorana, y Weyl, fueron descubiertos en dichos materiales, a pesar de que los dos últimos habían sido esquivos durante los experimentos, abriendo el camino para simular ciertas predicciones de la teoría cuántica de campos en experimentos relativamente baratos y a escala pequeña llevados a cabo en estos cristales de «materia condensada».

Predicen un nuevo tipo de partícula presente en 'universos materiales'

Cristales

Estos cristales se pueden desarrollar en el laboratorio, para hacer experimentos en busca del fermión ahora predicho en WTe2 y en otro material candidato, el ditelururo de molibdeno (MoTe2).

«La imaginación puede ir más allá y preguntarse si partículas que son desconocidos para la teoría cuántica de campos relativista pueden surgir en la materia condensada», dice Bernevig en la web de Princeton. Hay razones para creer que sí, según los investigadores.

El universo descrito por la teoría cuántica de campos está sujeto a la restricción rigurosa de un determinado conjunto de reglas, o simetría, conocida como la simetría de Lorentz, que es característica de las partículas de alta energía. Sin embargo, la simetría de Lorentz no es aplicable en la materia condensada, porque las velocidades típicas de los electrones en sólidos son muy pequeñas en comparación con la velocidad de la luz, por lo que la física de la materia condensada es una teoría de baja energía por definición.

«Uno puede preguntarse», dice Soluyanov, «si es posible que algunos universos materiales acojan partículas no relativistas elementales que no cumplan la simetría de Lorentz?»

Esta pregunta fue respondida positivamente por un trabajo de la colaboración internacional. El trabajo comenzó en una visita de Soluyanov y Dai a Bernevig en Princeton, en noviembre de 2014, discutiendo sobre el extraño e inesperado comportamiento de ciertos metales en los campos magnéticos.

Los investigadores descubrieron que mientras que la teoría relativista sólo permite que exista una única especie de fermiones de Weyl, en los sólidos de materia condensada dos fermiones de Weyl físicamente distintos son posibles.

El fermión de Weyl estándar Tipo-I tiene sólo dos posibles estados en los que puede estar en energía cero, similares a los estados de un electrón que puede tener espín up o espín down. La densidad de estados en energía cero es cero, y el fermión es inmune a muchos efectos termodinámicos interesantes. Este fermión de Weyl existe en la teoría de campos relativista, y es el único permitido si se preserva la invariancia de Lorentz.

El tipo-2 del fermión de Weyl, recién predicho, tiene varios estados termodinámicos en los que puede estar en energía cero: tiene lo que se denomina una superficie de Fermi. Su superficie de Fermi es exótica, debido a que muestra puntos de contacto entre bolsillos de electrones y de huecos. Esto dota al nuevo fermión con una densidad finita de estados que rompe la simetría de Lorentz.

Posibilidades

El descubrimiento abre muchas nuevas direcciones. La mayoría de los metales normales exhiben un aumento en la resistividad cuando se someten a campos magnéticos, un efecto conocido y utilizado en muchas tecnologías actuales. La reciente predicción y la comprobación experimental de la existencia de fermiones de Weyl estándar Tipo-I en semimetales, por dos grupos de Princeton y un grupo del Instituto de Física de China, muestran que la resistividad en realidad puede disminuir si el campo eléctrico se aplica en la misma dirección que el campo magnético, un efecto llamado magnetorresistencia longitudinal negativa.

El nuevo trabajo muestra que los materiales que alojan fermiones de Weyl tipo II mezclan comportamientos: Mientras que para algunas direcciones de los campos magnéticos la resistividad aumenta igual que en los metales normales, para otras direcciones de los campos, la resistividad puede disminuir igual que en los semimetales de Weyl, lo cual ofrece posibles aplicaciones tecnológicas.

«Aún más intrigante es la perspectiva de encontrar más partículas elementales en otros sistemas de materia condensada», dicen los investigadores. «¿Qué clases de otras partículas se pueden ocultar en la variedad infinita de universos materiales? La gran variedad de fermiones emergentes en estos materiales sólo ha comenzado a ser desentrañada.»

Referencia bibliográfica:

Alexey A. Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias Troyer, Xi Dai, B. Andrei Bernevig: Type-II Weyl semimetals. Nature (2015). DOI: 10.1038/nature15768.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren la primera evidencia de antigua vida humana en cuevas de lava 19 abril, 2024
    Los arqueólogos han descubierto la primera evidencia de que los humanos alguna vez ocuparon una cueva en Arabia Saudita formada por lava: hallaron diversos artefactos que confirman la actividad humana desde hace al menos 10.000 años hasta 3.500 años atrás, en esa red de cuevas de lava.
    Pablo Javier Piacente
  • Desarrollan un enjambre de cucarachas cyborgs controladas por IA para misiones peligrosas 19 abril, 2024
    Un equipo científico ha logrado crear un sistema robótico que permite manejar a distancia un pequeño ejército de cucarachas cyborgs, controladas a través de un algoritmo de Inteligencia Artificial (IA) para optimizar su navegación. Podrían ser de gran utilidad en operaciones de salvataje y gestión de desastres.
    Pablo Javier Piacente
  • La geometría del caos, ¿futuro de la arquitectura? 19 abril, 2024
    Las asimétricas celosías chinas de rayos de hielo, con una antigüedad de al menos 200 años, pueden inspirar la arquitectura actual porque proporcionan mayor estabilidad, resistencia y estética, que las estructuras simétricas. Además, sus patrones geométricos son los mismos que muestran nuestros huesos.
    Redacción T21
  • Los abrazos alivian la ansiedad y la depresión, según un nuevo estudio 18 abril, 2024
    Los abrazos y otras formas de contacto físico pueden ayudar con la salud mental en personas de todas las edades, según una nueva revisión de 212 estudios previos. Aunque esto ya estaba claro, los expertos aún no habían podido determinar qué tipo de contacto es el que genera más ventajas y por qué.
    Pablo Javier Piacente
  • Corrientes de estrellas y materia oscura diseñaron a la Vía Láctea 18 abril, 2024
    Restos de galaxias absorbidas por la Vía Láctea conforman corrientes estelares que la diseñaron a lo lardo de su historia. Algunas de esas fusiones podrían arrojar luz sobre el misterio de la materia oscura.
    Pablo Javier Piacente
  • Ya vivimos en un mundo de ciencia ficción 18 abril, 2024
    El Meta World Congress celebrado la semana pasada en Madrid ha dejado claro que los mundos virtuales y los videojuegos son el laboratorio de un Metaverso cada vez más inteligente y que la tecnología inmersiva cambiará el teatro y los conciertos. Un proceso de fusión de inteligencias llevará a la creatividad artificial a mezclarse con […]
    ALEJANDRO SACRISTÁN (enviado especial)
  • Descubren el pan más antiguo en Turquía: tiene 8.600 años 17 abril, 2024
    Un equipo de arqueólogos ha descubierto el pan más antiguo conocido en todo el mundo, que data del año 6600 a. C. Fue identificado en Çatalhöyük, un destacado asentamiento neolítico en Anatolia central, Turquía.
    Pablo Javier Piacente
  • Detectan un enorme agujero negro dormido en nuestra galaxia 17 abril, 2024
    El agujero negro de masa estelar más monstruoso de la Vía Láctea es un gigante dormido que acecha cerca de la Tierra, según un nuevo estudio. Con una masa casi 33 veces mayor que la del Sol, esta colosal estructura cósmica yace oculta a menos de 2.000 años luz de nuestro planeta, en la constelación […]
    Pablo Javier Piacente
  • Los pájaros reviven en sus sueños experiencias reales 17 abril, 2024
    Una investigación increíble ha descubierto que los pájaros a veces sueñan que están defendiendo su territorio frente a rivales, mostrándose con una cresta erizada de plumas y con un trino asociado al enfrentamiento.
    Redacción T21
  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente