Tendencias21
Revelado el secreto de la geometría de las plantas

Revelado el secreto de la geometría de las plantas

Durante mucho tiempo el hecho de que las plantas puedan mantener el ángulo de sus ramas laterales a pesar de la gravedad ha resultado un misterio para los científicos. Ahora, investigadores de la Universidad de Leeds han desentrañado el mecanismo que subyace a esta capacidad, que aumenta las posibilidades de supervivencia de las plantas. El hallazgo podría impulsar la mejora del rendimiento de los cultivos. Por Marta Lorenzo.

Revelado el secreto de la geometría de las plantas

Investigadores de la Universidad de Leeds (Reino Unido) han descubierto cómo las plantas establecen los ángulos de sus ramas.

Mientras que otras características de la arquitectura de las plantas -como el control del número de ramas o la colocación de éstas alrededor del tallo principal- ya se comprendían bien, durante mucho tiempo el hecho de que las plantas puedan mantener el ángulo de sus ramas laterales a pesar de la gravedad ha resultado un misterio para los científicos.

El mecanismo subyacente a esta capacidad resulta fundamental para comprender la forma de las plantas que nos rodean: explicar cómo, por ejemplo, las ramas de un joven chopo se colocan casi verticalmente, mientras que las de un roble se extienden a lo ancho.

Stefan Kepinski, profesor de la Facultad de Ciencias Biológicas de dicha Universidad y autor principal de un artículo sobre este estudio aparecido en la revista Current Biology explica en un comunicado del Centro: «Comenzamos a trabajar en esto después de un viaje en tren a Leeds. Mirando por la ventana, me llamó la atención el hecho de que la manera de distinguir unas especies de plantas y de árboles de otras desde la distancia se basaba gran medida en el ángulo en que crecen sus ramas”.

«Estos ángulos característicos están a nuestro alrededor y lo mismo ocurre bajo tierra: diferentes variedades de plantas a menudo presentan raíces con arquitecturas muy diferentes, determinadas sobre todo por el ángulo de crecimiento de sus ramificaciones laterales», continúa Kepinski.

Relación entre arquitectura y gravedad

El aparentemente simple rompecabezas de cómo una planta establece y mantiene esos ángulos en su arquitectura global se complica porque el ángulo de las ramas de raíces y tallos no está normalmente relacionado con la raíz o el tallo principal, a partir de los cuales las ramificaciones se desarrollan, sino con la gravedad.

Es lo que se denomina “gravitropismo”, un tipo de tropismo o crecimiento direccional de los organismos propio de los vegetales, marcado por la aceleración de la gravedad. El gravitropismo posibilita el crecimiento basípeto de las raíces, que deben hundirse en el suelo para su correcto funcionamiento, y el crecimiento de los tallos hacia el medio aéreo.

En el caso de las raíces o el del tallo principal de las plantas –que crece en posición vertical- el gravitropismo se comprende bien: la gravedad inclina a la planta y esta inclinación es detectada por unas células sensibles, similares en funcionamiento a los estatocistos de los invertebrados acuáticos.

Tras esta detección, la planta incrementa la producción de una hormona reguladora del crecimiento llamada auxina, que se sitúa en menor cantidad en uno de los lados y en mayor cantidad en otro, para impulsar el crecimiento de las ramificaciones de las raíces hacia abajo y de los brotes hacia arriba.

Cuando el crecimiento vuelve a la verticalidad, los “estatoscistos” dejan de promover la producción de auxina y el proceso de estanca.

Sin embargo, para los especialistas seguía existiendo un misterio en la forma de las plantas: ¿Por qué los ángulos de las ramas y de las estructuras de las raíces de éstas, con respecto a la gravedad, son variados, en lugar de ser completamente verticales siempre?

Ese ángulo característico de cada planta es conocido como “ángulo de consigna gravitrópica”, y determina la arquitectura de los vegetales.

Un mecanismo compensatorio varía la “consigna”

A este respecto, Kepinski explica: «Hemos descubierto otro componente de este tipo de crecimiento: el contrapeso antigravitrópico, un factor que contrarresta el crecimiento normal gravitrópico de las ramas laterales. Este mecanismo de compensación evita que la rama se mueva más allá de un determinado ángulo ajustado a la vertical. Resulta que este crecimiento compensatorio también está impulsado por la auxina, la misma hormona que causa el crecimiento sensible a la gravedad en la parte inferior de las ramas».

Por otra parte, se ha establecido que las ramas que crecen cerca del eje vertical del tallo tienen un contrapeso antigravitrópico débil, mientras que las ramas que se extienden más a partir de dicho eje presentan un contrapeso antigravitrópico fuerte, lo que les permite desarrollarse en ángulos poco profundos.

Kepinski añade: “Se puede comparar con la forma de manejar un barco con dos hélices. Si quieres virar tienes que dar más velocidad a una que a otra, pero para volver a navegar recto, la hélice acelerada tiene que volver a su velocidad inicial o hay que acelerar la otra para equilibrar el movimiento, en este caso, la ‘velocidad’de crecimiento a cada lado de la rama. En una rama no vertical, el desplazamiento antigravitrópico es constante, mientras que la gravedad aumenta el crecimiento de respuesta en una magnitud proporcional a la distancia de la rama al tallo, generando un sistema de crecimiento que mantiene toda una gama de ángulos de ramificación “.

El equipo de Leeds demostró la presencia de la desviación usando un clinostato, un dispositivo que sirve para estudiar el crecimiento de las plantas, una vez que la influencia de la gravedad es eliminada.

El clinostato funciona haciendo girar lentamente a una planta que está creciendo, para eliminar así cualquier referencia de gravedad estable durante el desarrollo de la planta. Esto permitió a los investigadores conocer si el mecanismo de compensación anti-gravitrópico funcionaba sin la oposición de una respuesta gravitrópico coordinada.

Bajo estas condiciones, observaron que las ramificaciones de brotes y raíces se despliegan con un crecimiento de flexión hacia el exterior, alejándose de la raíz y el tallo principal con un movimiento que normalmente es enmascarado por la interacción con el crecimiento sensible a la gravedad.

Importancia del hallazgo

Kepinski explica: «El ángulo de crecimiento de las ramas es una adaptación de excepcional importancia, ya que determina la capacidad de la planta para captar recursos del aire y del subsuelo. Dependiendo de en qué tipo de suelo se encuentre una planta, el mecanismo le permite desenterrar los nutrientes en la capa superior del suelo o en zonas más profundas. Asimismo, las plantan pueden obtener ventajas del hecho de tener ramas más inclinadas, para evitar la sombra de plantas vecinas. Hasta ahora, nadie sabía cómo se establecían y se mantenían los ángulos de crecimiento no vertical, en relación con cambios constantes en la gravedad”.

El científico añade que estos conocimientos serán importantes “para la reproducción y la biotecnología enfocadas a la mejora de cultivos. Los productores de semillas desean poder alterar la arquitectura de las plantas con el fin de optimizar el rendimiento de los cultivos. Por ejemplo, se ha demostrado que el ángulo de crecimiento de la raíz lateral de las plantas resulta crucial para aumentar la absorción de nutrientes, tanto en especies vegetales de hoja ancha como en especies de cereales. Nuestros resultados proporcionan herramientas y enfoques para ayudar a afrontar estos desafíos».

Kepinski espera comprobar que este mismo mecanismo funciona en plantas más grandes y en tiernas plántulas de árboles. En los árboles más viejos, los mecanismos que impulsan el crecimiento sensible a la gravedad en los tejidos leñosos son diferentes a los de las plantas no leñosas. Sin embargo, afirma que se pueden aplicar los mismos principios generales.

La presente investigación fue realizada con brotes de Arabidopsis thaliana (berro) y plantas de guisantes, frijoles y arroz.

Referencia bibliográfica:

Suruchi Roychoudhry, Marta Del Bianco, Martin Kieffer, Stefan Kepinski. Auxin Controls Gravitropic Setpoint Angle in Higher Plant Lateral Branches. Current Biology (2013). DOI: 10.1016/j.cub.2013.06.034.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los abrazos alivian la ansiedad y la depresión, según un nuevo estudio 18 abril, 2024
    Los abrazos y otras formas de contacto físico pueden ayudar con la salud mental en personas de todas las edades, según una nueva revisión de 212 estudios previos. Aunque esto ya estaba claro, los expertos aún no habían podido determinar qué tipo de contacto es el que genera más ventajas y por qué.
    Pablo Javier Piacente
  • Corrientes de estrellas y materia oscura diseñaron a la Vía Láctea 18 abril, 2024
    Restos de galaxias absorbidas por la Vía Láctea conforman corrientes estelares que la diseñaron a lo lardo de su historia. Algunas de esas fusiones podrían arrojar luz sobre el misterio de la materia oscura.
    Pablo Javier Piacente
  • Ya vivimos en un mundo de ciencia ficción 18 abril, 2024
    El Meta World Congress celebrado la semana pasada en Madrid ha dejado claro que los mundos virtuales y los videojuegos son el laboratorio de un Metaverso cada vez más inteligente y que la tecnología inmersiva cambiará el teatro y los conciertos. Un proceso de fusión de inteligencias llevará a la creatividad artificial a mezclarse con […]
    ALEJANDRO SACRISTÁN (enviado especial)
  • Descubren el pan más antiguo en Turquía: tiene 8.600 años 17 abril, 2024
    Un equipo de arqueólogos ha descubierto el pan más antiguo conocido en todo el mundo, que data del año 6600 a. C. Fue identificado en Çatalhöyük, un destacado asentamiento neolítico en Anatolia central, Turquía.
    Pablo Javier Piacente
  • Detectan un enorme agujero negro dormido en nuestra galaxia 17 abril, 2024
    El agujero negro de masa estelar más monstruoso de la Vía Láctea es un gigante dormido que acecha cerca de la Tierra, según un nuevo estudio. Con una masa casi 33 veces mayor que la del Sol, esta colosal estructura cósmica yace oculta a menos de 2.000 años luz de nuestro planeta, en la constelación […]
    Pablo Javier Piacente
  • Los pájaros reviven en sus sueños experiencias reales 17 abril, 2024
    Una investigación increíble ha descubierto que los pájaros a veces sueñan que están defendiendo su territorio frente a rivales, mostrándose con una cresta erizada de plumas y con un trino asociado al enfrentamiento.
    Redacción T21
  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente
  • Crean un acelerador de partículas en miniatura con aplicaciones médicas 16 abril, 2024
    Investigadores alemanes han desarrollado un acelerador de electrones que mide poco menos de medio milímetro de largo y 0,2 micrómetros de ancho, es decir, menos de una milésima de milímetro. Tiene aplicaciones en la investigación básica y permitirá crear nuevas herramientas de radioterapia. Entrevista con sus protagonistas, Peter Hommelhoff y Stefanie Kraus.
    Oscar William Murzewitz (Welt der Physik)/T21
  • Revelan la primera molécula fractal en la naturaleza 15 abril, 2024
    Los científicos han descubierto una molécula en la naturaleza que sigue un patrón geométrico de autosimilitud, conocido como fractal. La enzima microbiana denominada citrato sintasa es la primera estructura fractal molecular ensamblada directamente en la naturaleza que ha logrado identificarse hasta el momento. Los especialistas creen que este fractal puede representar un accidente evolutivo.
    Pablo Javier Piacente