Tendencias21

Simuladores cuánticos para recrear sistemas físicos innacesibles

Investigadores de la Universidad del País Vasco trabajan en el diseño de simuladores cuánticos para el estudio de la dinámica de sistemas físicos complejos; recrean por ejemplo el comportamiento a escala microscópica de sistemas biológicos, cuánticos, e incluso de partículas en movimiento a la velocidad de la luz. Una de las tecnologías que utilizan es la de iones atrapados, que consiste en aislar átomos individuales en un entorno controlado, de forma que no exista ninguna interferencia con el entorno, e interactuar con ellos mediante láseres.

Simuladores cuánticos para recrear sistemas físicos innacesibles

Los simuladores cuánticos recrean el comportamiento a escala microscópica de sistemas biológicos, cuánticos, e incluso de partículas en movimiento a la velocidad de la luz. El conocimiento exacto de estos sistemas dará lugar a aplicaciones, desde células fotovoltaicas más eficientes hasta fármacos más específicos.

El grupo de investigación del Departamento de Química Física de la Universidad del País Vasco/EHU trabaja en el diseño de varios de estos simuladores cuánticos para el estudio de la dinámica de sistemas físicos complejos.

La mecánica cuántica es la herramienta matemática que nos permite describir los procesos físicos que ocurren a escala microscópica; es capaz de predecir de forma satisfactoria la estabilidad de átomos y moléculas, la reactividad de los diferentes compuestos químicos, o el resultado de la interacción entre radiación y materia. Todas ellas son situaciones que constituyen la base de nuestro mundo físico y que no encuentran explicación dentro del marco de la física clásica.

«Los procesos físicos que ocurren a nivel cuántico obedecen a modelos matemáticos tan sofisticados que no pueden ser analizados mediante los ordenadores actuales, debido a las limitaciones computacionales de éstos», explica en la nota de prensa de la UPV el doctor Jorge Casanova, investigador del Departamento de Química Física de la Universidad. Una posible solución al problema de la complejidad computacional de los sistemas físicos consiste en utilizar una plataforma o tecnología cuántica como simulador.

Los simuladores cuánticos superan la limitación de los ordenadores convencionales. Entre las diferentes tecnologías a estudiar para el desarrollo de simuladores cuánticos eficientes, este grupo de investigación de la UPV/EHU se ha centrado en la tecnología de iones atrapados.

«Esencialmente, el funcionamiento de estos sistemas consiste en aislar átomos individuales en un entorno controlado, de forma que no exista ninguna interferencia con el entorno. Posteriormente, se incide en ellos mediante láseres, y se consigue realizar operaciones, como excitar o desexcitar los electrones de esos átomos. De esta forma, se les hace comportarse como el sistema que queremos estudiar», detalla Casanova, autor principal del trabajo.

Basándose en esta tecnología de iones atrapados, Casanova y sus colaboradores han diseñado varios protocolos para el desarrollo de simulaciones cuánticas controladas. «Nosotros somos físicos teóricos; trabajamos diseñando los procesos que posteriormente sucederán en un experimento determinado. Nos basamos en las leyes de la mecánica cuántica, que son las que rigen esos sistemas, y proponemos ideas que posteriormente son verificadas en los laboratorios con los que trabajamos en colaboración», explica el investigador.

Diversas situaciones físicas

En el transcurso de la investigación, el equipo de la UPV/EHU ha diseñado protocolos de simulación cuántica para varias situaciones físicas. El primero fue un simulador de sistemas relativistas, es decir, de partículas que se mueven a velocidades cercanas a la de la luz. «Este experimento no es trivial, porque los iones utilizados están quietos, y sin embargo, conseguimos que se comportasen como si estuvieran moviéndose a la velocidad de la luz».

El experimento planteado por este grupo del Departamento de Química Física se llevó a cabo en Austria, «y tuvo bastante repercusión internacional, porque, hasta el momento, este ha sido el experimento en el que se ha conseguido el mayor nivel de control cuántico sobre los estados de movimiento iónicos a nivel mundial», comenta Casanova.

Tras el éxito obtenido, siguieron proponiendo simuladores cuánticos para otro tipo de sistemas, como los sistemas de fermiones y bosones en interacción. «Esto es muy importante», señala Casanova, porque en la naturaleza esencialmente existen dos tipos de partículas: unas son fermiones (en los átomos, por ejemplo, los electrones) y las otras son bosones (como los fotones o partículas de luz, o el bosón de Higgs). Los fermiones tienen espín semientero (1/2, 3/2, etc.) y los bosones lo tienen entero (0, 1, 2…).

«Nuestra idea fue diseñar el sistema en estudio de forma artificial, de manera que tengamos acceso a extraer la información de él. El problema de estos sistemas es que sus dinámicas son tan complejas que no se puede tener acceso a ellas a través de los cómputos realizados en ordenadores clásicos, es decir; conocemos bien las ecuaciones que describen su dinámica, pero no podemos resolverlas», comenta.

Más adelante plantearon otros dos tipos de simuladores. Por un lado, diseñaron simuladores de modelos de teoría cuántica de campos. Estas teorías «son las que describen los procesos más fundamentales, como las colisiones entre haces de partículas que suceden en los aceleradores, que también son muy complejas», aclara Casanova.

Química cuántica

Y, por otro, se centraron en la simulación de modelos de química cuántica. «Esta es una propuesta que tenemos en colaboración con el personal de investigación de la Universidad de Harvard (EE.UU.), allí diseñamos un protocolo específico para modelos de moléculas de química cuántica». También propusieron la fusión de un simulador cuántico con un ordenador cuántico, «un nuevo concepto para aumentar la versatilidad de las simulaciones cuánticas; lo que hicimos fue crear un marco matemático que dota a los simuladores con el acceso a un mayor número de tareas».

Casanova explica el interés, desde el punto de vista tecnológico, de todos estos simuladores cuánticos: «Toda la industria farmacéutica, la industria química y de materiales, e incluso la energética busca diseñar moléculas que sean más eficientes para una determinada función. Por ejemplo, las células fotovoltaicas, las que utilizamos para captar la energía solar, actualmente solo atrapan el 20% de la energía que les llega. Entonces, un modelo de moléculas más eficientes en la captura de energía solar incrementaría el aprovechamiento energético de esas células fotovoltaicas. Para eso debes ser capaz de diseñar moléculas, y saber cómo se van a comportar».

«Yo creo que en un periodo de unos 5-10 años seremos capaces de diseñar moléculas específicas para determinados procesos, como la captura de energía solar, o incluso para diseñar materiales y medicamentos. En el momento en que seamos capaces de entender sistemas complejos, seremos capaces de predecir su comportamiento, y de diseñar nueva tecnología basada en ese conocimiento».

Referencia bibliográfica:

M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, E. Solano. 2014. From transistor to trapped-ion computers for quantum chemistry. Scientific Reports (2014). DOI:10.1038/srep03589.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente
  • La vida podría existir desde los inicios del Universo 16 abril, 2024
    El físico Avi Loeb sostiene en un reciente artículo que los elementos para el desarrollo de la vida tal como la conocemos podrían estar presentes en el cosmos desde la formación de las primeras estrellas, unos 100 millones de años después del Big Bang. También postula que esta hipótesis podría comprobarse si la misión Dragonfly […]
    Pablo Javier Piacente
  • Crean un acelerador de partículas en miniatura con aplicaciones médicas 16 abril, 2024
    Investigadores alemanes han desarrollado un acelerador de electrones que mide poco menos de medio milímetro de largo y 0,2 micrómetros de ancho, es decir, menos de una milésima de milímetro. Tiene aplicaciones en la investigación básica y permitirá crear nuevas herramientas de radioterapia. Entrevista con sus protagonistas, Peter Hommelhoff y Stefanie Kraus.
    Oscar William Murzewitz (Welt der Physik)/T21
  • Revelan la primera molécula fractal en la naturaleza 15 abril, 2024
    Los científicos han descubierto una molécula en la naturaleza que sigue un patrón geométrico de autosimilitud, conocido como fractal. La enzima microbiana denominada citrato sintasa es la primera estructura fractal molecular ensamblada directamente en la naturaleza que ha logrado identificarse hasta el momento. Los especialistas creen que este fractal puede representar un accidente evolutivo.
    Pablo Javier Piacente
  • El cambio climático podría estar relacionado con el aumento de los accidentes cerebrovasculares 15 abril, 2024
    Una nueva investigación ha demostrado que el número de muertes ligadas a accidentes cerebrovasculares y otras patologías relacionadas ha ido creciendo desde 1990, a la par del aumento de las temperaturas extremas. Durante 2019, el último año analizado, más de 500.000 muertes por accidentes cerebrovasculares se vincularon con temperaturas "no óptimas", provocadas por el calentamiento […]
    Pablo Javier Piacente
  • La globalización está fracturando a la humanidad 15 abril, 2024
    La globalización no está conduciendo a una civilización universal con valores compartidos, sino que está creando una brecha creciente entre los países occidentales de altos ingresos y el resto del mundo, en cuanto a valores como la tolerancia, la diversidad y la libertad.
    Eduardo Martínez de la Fe
  • En el caso de los caracoles, el huevo fue lo primero 14 abril, 2024
    Un caracol marino que primero fue ovíparo y evolucionó hacia la viviparidad revela que los saltos evolutivos ocurren gradualmente, a través de una serie de pequeños cambios.
    Redacción T21
  • Revelan el misterio del árbol tropical que camina 13 abril, 2024
    La denominada "palma caminante" o Socratea exorrhiza es un árbol de América Central y del Sur que según distintas versiones podría "caminar" y erguirse en determinadas situaciones: ahora, este mito parece haber sido resuelto bajo criterios científicos. Según los investigadores, aunque el árbol puede crecer rápidamente y crear nuevas raíces para lidiar con la pérdida […]
    Pablo Javier Piacente
  • Descubren 50 especies desconocidas para la ciencia en la exótica Isla de Pascua 12 abril, 2024
    Una expedición a la Cordillera de Salas y Gómez, frente a Rapa Nui, en el Océano Pacífico, documentó 160 especies animales que no se sabía que habitaban esta región de la misteriosa Isla de Pascua, en Chile. Además, descubrieron 50 criaturas que son absolutamente nuevas para la ciencia.
    Pablo Javier Piacente
  • El clima espacial podría generar un caos satelital sin precedentes 12 abril, 2024
    Los satélites en órbita terrestre baja (LEO) pueden perder su brújula cuando el clima espacial ofrece situaciones inesperadas. El problema afecta a la Estación Espacial Internacional, la estación espacial Tiangong de China y muchos satélites de observación de la Tierra. Los expertos sostienen que esta incertidumbre de posicionamiento aumenta el riesgo de colisiones orbitales peligrosas, […]
    Pablo Javier Piacente