Tendencias21
Tevatron observa indicios del bosón de Higgs consistentes con los del LHC

Tevatron observa indicios del bosón de Higgs consistentes con los del LHC

Las nuevas medidas anunciadas por los científicos de las colaboraciones CDF y DZero del Laboratorio Fermilab, del Departamento de Energía de Estados Unidos, indican que el esquivo bosón de Higgs puede estar casi acorralado. Después de analizar los datos completos del acelerador Tevatron, ambos experimentos ven indicios independientes de la existencia del bosón de Higgs.

Tevatron observa indicios del bosón de Higgs consistentes con los del LHC

Las nuevas medidas anunciadas por los científicos de las colaboraciones CDF y DZero del Laboratorio Fermilab, del Departamento de Energía de Estados Unidos, indican que el esquivo bosón de Higgs puede estar casi acorralado.

Después de analizar los datos completos del acelerador Tevatron, ambos experimentos ven indicios independientes de la existencia del bosón de Higgs. Los físicos de las colaboraciones CDF y DZero han encontrado excesos en sus datos que pueden ser interpretados como procedentes de un bosón de Higgs con una masa en la región de 115 a 135 GeV (gigaelectronvoltios, más de 100 veces la masa del protón). El nuevo resultado tiene una probabilidad de ser debido a una fluctuación estadística al nivel de significación conocido entre los científicos como 2,2 sigmas.

Coincidencia con los resultados del LHC

Este resultado se asienta bien dentro de los límites establecidos por las mediciones anteriores realizadas por el Gran Colisionador de Hadrones (LHC) del Laboratorio Europeo de Física de Partículas (CERN), el Tevatron, y otros aceleradores, que ponen la masa del bosón de Higgs en el rango de 115 a 127 GeV.

Asimismo, estos hallazgos también son consistentes con el anuncio de diciembre de 2011 de los excesos observados en ese rango por los experimentos ATLAS y CMS del LHC. Sin embargo, ninguna de las señales anunciadas hasta la fecha son lo suficientemente fuertes para reclamar la evidencia del descubrimiento del bosón de Higgs.

Este nuevo resultado de Tevatron también excluye la posibilidad de que el bosón de Higgs tenga una masa en el rango de 147 a 179 GeV. Los físicos afirman que hay evidencia de una nueva partícula sólo si la probabilidad de que los datos pudieran ser debido a una fluctuación estadística es menor que 1 en 740, o tres sigmas. Un descubrimiento se confirma sólo si esa probabilidad es menor que 1 en cada 3,5 millones, o cinco sigmas.

Los físicos de los experimentos CDF y DZero han realizado este anuncio en la conferencia anual sobre las interacciones electrodébil y teorías unificadas conocida como Encuentros de Moriond, que se celebra esta semana en Italia. Este nuevo análisis utiliza 10 femtobarns inversos de datos de CDF y DZero, el conjunto completo de datos recogidos en 10 años del programa de investigación del Tevatron, lo que supone cerca de 500 billonesde colisiones protón-antiprotón. El acelerador dejó de funcionar en septiembre de 2011.

Tevatron observa indicios del bosón de Higgs consistentes con los del LHC

«Estoy entusiasmado con el ritmo de los avances en la búsqueda del bosón de Higgs. Científicos de todo el mundo de las colaboraciones CDF y DZero han sorteado todos los obstáculos para llegar a esta contribución tan preciosa e importante en la búsqueda del bosón de Higgs», dijo el director de Fermilab, Pier Oddone.

Los bosones de Higgs, si es que existen, son de corta duración y pueden desintegrarse de muchas maneras diferentes. Así como una máquina expendedora puede devolver la misma cantidad de cambio usando diferentes combinaciones de monedas, el bosón de Higgs puede decaer en diferentes combinaciones de partículas. El descubrimiento del bosón de Higgs se basa en la observación de excesos estadísticamente significativos de las partículas en las que se desintegra en lugar de observar el propio Higgs.

Estrategia de búsqueda complementaria

Sólo los colisionadores de partículas de alta energía como el Tevatron y el LHC pueden recrear las condiciones energéticas que existían en el universo poco después del Big Bang. De acuerdo con el Modelo Estándar, la teoría que explica y predice cómo las partículas fundamentales de la naturaleza se comportan e interactúan entre sí, el bosón de Higgs da masa a otras partículas.

Los experimentos del Tevatron y el LHC ofrecen una estrategia de búsqueda complementaria para el bosón de Higgs. Debido a que los dos aceleradores hacen colisionar diferentes pares de partículas y a energías diferentes, produciendo diferentes tipos de fondos, las estrategias de búsqueda son diferentes. En el Tevatron, por ejemplo, el método más poderoso es la búsqueda de un bosón de Higgs que se desintegra en un par de quarks “bottom”, si la masa del bosón de Higgs es de aproximadamente 115 a 130 GeV. Es fundamental observar el bosón de Higgs en diversos tipos de canales de desintegración para confirmar o descartar su existencia.

Participación española en los análisis

“Es un resultado magnífico y complementa de forma perfecta los resultados del LHC” indicó Alberto Ruiz Jimeno, jefe del Grupo de Altas Energías del Instituto de Física de Cantabria (IFCA, centro mixto CSIC-Universidad de Cantabria). “El LHC ha observado indicios de existencia del bosón de Higgs en su desintegración a dos fotones, mientras en el Tevatron los indicios están en su modo de desintegración más probable, a un par de quarks b-antib. Si no se hubiera obtenido una señal en esta canal, el Modelo Estándar estaría herido pero, una vez más, se manifiesta con fuerza extraordinaria”.

Para Alberto Ruiz, “va a resultar interesante y difícil buscar la brecha en esta teoría que, por otros argumentos cosmológicos y teóricos, sabemos que no puede ser el punto final de la Física. En todo caso, si confirmamos la existencia del bosón de Higgs en torno a 125 GeV, aún tendremos que mostrar si se trata o no del Higgs tal y como lo predice el Modelo Estándar o por el contrario de un Higgs supersimétrico».

El Instituto de Física de Cantabria y la Universidad de Oviedo han liderado un análisis en el canal de producción del bosón de Higgs asociado al bosón W, decayendo en un par de quarks “bottom-antibottom”. Este canal es el más sensible para una masa del bosón de Higgs en la zona en la que se ha observado el exceso de datos. Jesús Vizán ha liderado el análisis, continuación de los realizados por Bárbara Álvarez y Bruno Casal, que hicieron sus tesis doctorales en este campo dirigidos por Javier Cuevas, Rocío Vilar y Alberto Ruiz, investigadores todos ellos del IFCA y la Universidad de Oviedo (Unidad asociada del CSIC al IFCA).

“Con este resultado el Tevatron demuestra una vez más su tremendo potencial, aportando una pieza clave para la resolución de este puzle sobre el origen de la masa de las partículas” afirmó Aurelio Juste, profesor de investigación ICREA en el Instituto de Física de Altas Energías (IFAE) en Barcelona. Previamente coordinador de Física del experimento DZero en Fermilab, desde hace tres años Juste lidera el grupo de trabajo sobre la búsqueda del bosón de Higgs en DZero.

Según Aurelio Juste, “aunque los indicios en el Tevatron son muy sugerentes, en particular puestos en perspectiva dados los resultados del LHC, aún no constituyen una evidencia firme. Estamos empezando a trabajar en la combinación de resultados del Tevatron y del LHC, que se espera en un futuro próximo. En cuestión de meses podemos llegar a obtener respuesta a una de las preguntas más urgentes de la Física de Partículas en los últimos 30 años. Y lo que es más excitante, con ello generar nuevas preguntas”, concluye.

La participación española en Tevatron se concentra en el experimento CDF, un detector donde participan 430 científicos de 58 instituciones de 15 países. Además del IFCA, la Universidad de Oviedo y el IFAE, en CDF participan científicos del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), responsables de uno de los detectores más complejos de CDF, el detector de silicio, participando tanto en la operación como en la monitorización y análisis de datos de esta pieza fundamental para la búsqueda del bosón de Higgs de baja masa y de la asimetría materia-antimateria.

Estos tres centros de investigación forman parte del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN), proyecto Consolider-Ingenio 2010 cuyos principales objetivos son la promoción y coordinación científica de la participación española en proyectos internacionales, el desarrollo de actividades comunes de I+D y la formación e incorporación a los grupos de nuevos investigadores y técnicos. El CPAN pretende consolidar estas actuaciones mediante la constitución de un centro en red de carácter permanente, análogo a los existentes en otros países de nuestro entorno.

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Descubren la primera evidencia de antigua vida humana en cuevas de lava 19 abril, 2024
    Los arqueólogos han descubierto la primera evidencia de que los humanos alguna vez ocuparon una cueva en Arabia Saudita formada por lava: hallaron diversos artefactos que confirman la actividad humana desde hace al menos 10.000 años hasta 3.500 años atrás, en esa red de cuevas de lava.
    Pablo Javier Piacente
  • Desarrollan un enjambre de cucarachas cyborgs controladas por IA para misiones peligrosas 19 abril, 2024
    Un equipo científico ha logrado crear un sistema robótico que permite manejar a distancia un pequeño ejército de cucarachas cyborgs, controladas a través de un algoritmo de Inteligencia Artificial (IA) para optimizar su navegación. Podrían ser de gran utilidad en operaciones de salvataje y gestión de desastres.
    Pablo Javier Piacente
  • La geometría del caos, ¿futuro de la arquitectura? 19 abril, 2024
    Las asimétricas celosías chinas de rayos de hielo, con una antigüedad de al menos 200 años, pueden inspirar la arquitectura actual porque proporcionan mayor estabilidad, resistencia y estética, que las estructuras simétricas. Además, sus patrones geométricos son los mismos que muestran nuestros huesos.
    Redacción T21
  • Los abrazos alivian la ansiedad y la depresión, según un nuevo estudio 18 abril, 2024
    Los abrazos y otras formas de contacto físico pueden ayudar con la salud mental en personas de todas las edades, según una nueva revisión de 212 estudios previos. Aunque esto ya estaba claro, los expertos aún no habían podido determinar qué tipo de contacto es el que genera más ventajas y por qué.
    Pablo Javier Piacente
  • Corrientes de estrellas y materia oscura diseñaron a la Vía Láctea 18 abril, 2024
    Restos de galaxias absorbidas por la Vía Láctea conforman corrientes estelares que la diseñaron a lo lardo de su historia. Algunas de esas fusiones podrían arrojar luz sobre el misterio de la materia oscura.
    Pablo Javier Piacente
  • Ya vivimos en un mundo de ciencia ficción 18 abril, 2024
    El Meta World Congress celebrado la semana pasada en Madrid ha dejado claro que los mundos virtuales y los videojuegos son el laboratorio de un Metaverso cada vez más inteligente y que la tecnología inmersiva cambiará el teatro y los conciertos. Un proceso de fusión de inteligencias llevará a la creatividad artificial a mezclarse con […]
    ALEJANDRO SACRISTÁN (enviado especial)
  • Descubren el pan más antiguo en Turquía: tiene 8.600 años 17 abril, 2024
    Un equipo de arqueólogos ha descubierto el pan más antiguo conocido en todo el mundo, que data del año 6600 a. C. Fue identificado en Çatalhöyük, un destacado asentamiento neolítico en Anatolia central, Turquía.
    Pablo Javier Piacente
  • Detectan un enorme agujero negro dormido en nuestra galaxia 17 abril, 2024
    El agujero negro de masa estelar más monstruoso de la Vía Láctea es un gigante dormido que acecha cerca de la Tierra, según un nuevo estudio. Con una masa casi 33 veces mayor que la del Sol, esta colosal estructura cósmica yace oculta a menos de 2.000 años luz de nuestro planeta, en la constelación […]
    Pablo Javier Piacente
  • Los pájaros reviven en sus sueños experiencias reales 17 abril, 2024
    Una investigación increíble ha descubierto que los pájaros a veces sueñan que están defendiendo su territorio frente a rivales, mostrándose con una cresta erizada de plumas y con un trino asociado al enfrentamiento.
    Redacción T21
  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente