Tendencias21

Un microscopio para observar la orientación magnética de las aves, a nivel celular

Las vacas, las aves y otras especies animales se orientan siguiendo los campos magnéticos terrestres, gracias a una extraña capacidad conocida como magnetorrecepción, aún no del todo comprendida. Ahora, un equipo de investigadores de la Universidad de Tokio (Japón) ha desarrollado un microscopio capaz de observar el origen de esta sensibilidad: unas reacciones fotoquímicas que se suceden a escala de las células.

Un microscopio para observar la orientación magnética de las aves, a nivel celular

Las vacas, las aves y otras especies animales se orientan siguiendo los campos magnéticos terrestres, gracias a una extraña capacidad conocida como magnetorrecepción, no del todo comprendida por los científicos.

Ahora, un equipo de investigadores de la Universidad de Tokio (Japón) ha logrado desarrollar un microscopio capaz de observar el origen de esta sensibilidad: unas reacciones fotoquímicas que se suceden a una escala lo suficientemente pequeña como para «caber» dentro de estructuras subcelulares, informa la Universidad de Tokio en un comunicado.

Invisible proceso celular

Investigaciones recientes ya habían señalado que un grupo de proteínas presentes en las células vivas llamadas criptocromos y una molécula que forma parte de esos criptocromos (dinucleótido de flavina y adenina o FAD) están implicados en la magnetorrecepción.

Los criptocromos son un tipo de fotorrreceptores o receptores de la luz. Cuando estas proteínas absorben la luz azul de un entorno, desvían uno de sus electrones a su FAD asociada. Tanto los criptocromos como la FAD son moléculas con electrones ‘solitarios’ o no ‘apareados’ con otros electrones; de las conocidas como ‘radicales’. Por eso, se dice que la unión de los electrones de ambas moléculas da lugar a ‘pares radicales’.

Resulta que, una vez sucedido esto, el campo magnético que hay alrededor de los criptocromos  (en este caso, el campo magnético de la Tierra) determina el espín o giro de estos pares radicales, lo que altera su reactividad. De esta forma, dicho campo magnético puede afectar cómo las reacciones químicas del par radical se suceden.

Todo este sutilísimo proceso explicaría cómo las células vivas son sensibles al campo magnético de la Tierra.  Sin embargo, hasta la fecha, no había habido manera de medir el efecto de dicho campo en los pares radicales celulares.

Desvelar un milagroso sentido magnético

En la investigación liderada por Jonathan Woodward, del Woodward Lab de la Universidad de Tokyo,  los científicos lograron hacer mediciones de todo esto, utilizando un microscopio que, por primera vez, ha conseguido detectar estos pares radicales; así como la influencia de campos magnéticos muy débiles en su reactividad.

El microscopio es capaz de hacer mediciones en volúmenes extremadamente pequeños, inferiores a cuatro femtolitros (el femtolitro es una unidad de medida de volumen igual a 10-15 litros), gracias a que lleva incorporada una tecnología de imágenes desarrollada por el mismo equipo, y bautizada como TOAD (detección de absorción óptica transitoria).

Además, el microscopio tiene otro modo (llamado MIM, modulación de intensidad magnética) que permite observar  directamente solo aquellas regiones de las células vivas magnéticamente sensibles. 

Por todo, los científicos esperan que esta tecnología permita estudiar a fondo la sensibilidad magnética de las reacciones fotoquímicas en diversos contextos biológicos clave, para desvelar los secretos del ‘milagroso sentido magnético de los animales’.

Orientación cuántica

Algunos de los estudios más recientes sobre magnetorrecepción han señalado que esta capacidad estaría relacionada con la física cuántica. Uno de ellos, la vinculó en 2010 a un fenómeno de la física de partículas conocido como “entrelazamiento cuántico».

El segundo, señaló en 2008 que la incidencia del campo magnético terrestre sobre los electrones presentes en los iones más inestables de la retina podría generar una respuesta química que señalara a los animales (en concreto, a las aves) hacia donde dirigirse. Esto sería posible gracias al efecto cuántico de Zenón, que permitiría que el tiempo de incidencia de dicho campo magnético fuera suficiente como para afectar a los iones y determinar la señal química necesaria. 

Referencia bibliográfica:

Joshua P. Beardmore, Lewis M. Antill, Jonathan R. Woodward. Optical Absorption and Magnetic Field Effect Based Imaging of Transient Radicals. Angewandte Chemie International Edition (2015). DOI: 10.1002/anie.201502591.
 

RedacciónT21

Hacer un comentario

RSS Lo último de Tendencias21

  • Los astrónomos observan un misterioso glóbulo cometario vagando por el cosmos 27 marzo, 2024
    Utilizando el Telescopio de rastreo VLT (VST) los científicos han producido una imagen impactante de GN 16.43.7.01, un glóbulo cometario situado a 5.000 años luz de distancia de la Tierra, en la constelación de Escorpio. Se trata de pequeñas y débiles nubes interestelares de gas y polvo cósmico, con una forma similar a la de […]
    Pablo Javier Piacente
  • Sería inminente el hallazgo de vida extraterrestre en Europa, una de las lunas de Júpiter 27 marzo, 2024
    Basado en experimentos recientes, un grupo de científicos determinó en un nuevo estudio que un instrumento en particular a bordo de la futura misión Europa Clipper de la NASA, denominado SUrface Dust Analyzer, era tan sensible que probablemente podría detectar signos de vida extraterrestre en granos individuales de hielo expulsados por Europa, la luna helada […]
    Pablo Javier Piacente
  • ¿La criopreservación es el paso necesario para la resurrección moderna? 27 marzo, 2024
    En España hay cinco casos de personas sometidas a criopreservación después de fallecer, a la espera de que la tecnología permita, tal vez, volverlos a la vida en los años 50 de este siglo.
    José Luis Cordeiro (*)
  • Crean un cerebro fantasma en forma de cubo impreso en 3D 27 marzo, 2024
    Investigadores austriacos han desarrollado un modelo de cerebro impreso en 3D basado en la estructura de las fibras cerebrales visibles mediante imágenes de resonancia magnética. Permite estudiar la compleja red neuronal con una precisión sin precedentes.
    Redacción T21
  • El océano se está desgarrando 26 marzo, 2024
    2.000 terremotos en un día en Canadá insinúan el nacimiento de una nueva corteza oceánica frente a la costa de la isla de Vancouver: está a punto de nacer a través de una ruptura magmática en las profundidades del mar.
    Pablo Javier Piacente
  • Simulan una explosión termonuclear en un superordenador 26 marzo, 2024
    Una simulación por superordenador nos brinda nuevos conocimientos sobre el comportamiento de las estrellas de neutrones: al evocar la explosión termonuclear que tiene lugar cuando estos monstruos cósmicos devoran a otra estrella, los investigadores logran avanzar en la comprensión de los fenómenos más extremos que suceden en el cosmos.
    Pablo Javier Piacente
  • Las matemáticas tienen la clave para erradicar el machismo 26 marzo, 2024
    Las matemáticas demuestran que si una parte significativa de las mujeres de una población (superando el límite del 45%) se comporta solidariamente con otras mujeres (como si fuesen hermanas), el machismo se extingue.
    Alicia Domínguez y Eduardo Costas (*)
  • El cerebro nos invita a soñar despiertos y luego nos rescata del ensueño 26 marzo, 2024
    El cerebro dispone de un doble mecanismo que, por un lado, nos inspira la creatividad provocando que soñemos despiertos, y por otro, nos devuelve a la realidad para sacarnos de la divagación inútil.
    Redacción T21
  • Las ondas cerebrales se mueven en direcciones opuestas para crear recuerdos y luego para recuperarlos 25 marzo, 2024
    Los científicos descubrieron que las ondas cerebrales tendían a moverse desde la parte posterior del cerebro hacia el frente mientras las personas guardaban algo en su memoria. Por el contrario, cuando buscaban recordar la misma información, esas ondas se movían en la dirección opuesta, desde el frente hacia la parte posterior del cerebro.
    Pablo Javier Piacente
  • Descubren una de las estrellas más antiguas del Universo muy cerca de la Vía Láctea 25 marzo, 2024
    La estrella LMC 119 fue apreciada en la Gran Nube de Magallanes, muy cerca de la Vía Láctea, y es la primera estrella de la segunda generación de formación estelar del Universo que se ha identificado en otra galaxia. Esta estrella, una de las más antiguas en el cosmos descubiertas hasta hoy, proporciona una ventana […]
    Pablo Javier Piacente