Tendencias21

Una nueva teoría determina leyes más generalizadas del movimiento en el espacio

Una nueva teoría científica predice el comportamiento de la naturaleza en supuestos no inerciales y determina unas leyes más generalizadas del movimiento en el espacio. Lo consigue reinterpretando el comportamiento observable de los cuerpos cuando están sujetos a momentos no coaxiales sucesivos. La teoría justifica la desviación que sufre la trayectoria curvilínea horizontal de una pelota, explica la órbita cerrada y plana de la Luna o justifica la segunda ley de Kepler.

Una nueva teoría determina leyes más generalizadas del movimiento en el espacio

Una nueva teoría que propone nuevas claves para entender la dinámica de nuestro entorno y comprender mejor la mecánica del universo ha sido desarrollada por un grupo de investigadores españoles a lo largo de los últimos 35 años y ahora acaba de salir a la luz.

Los resultados se han publicado en la revista especializada Transactions on Machine Learning and Artificial Intelligence y también en el libro “Nuevo Paradigma en Física (Madrid, 2017). La revista World Journal of Mechanics le ha dedicado asimismo un especial a esta Teoría en el que siete científicos la analizan y desarrollan.

La nueva teoría trasciende el marco de la mecánica clásica para introducirse en el mundo de los sistemas dinámicos no lineales, muy poco estudiados todavía y de los que no se dispone de una estructura conceptual definida.

La nueva teoría define un nuevo modelo físico y matemático para predecir el comportamiento de la naturaleza en supuestos no inerciales y determinar unas leyes más generalizadas del movimiento en el espacio.

De hecho, la teoría establece nuevos criterios conceptuales, con una descripción más general, para comprender el comportamiento de la naturaleza, lo que significa que las leyes actuales de la dinámica podrían considerarse casos especiales y específicos de esta teoría.

La Teoría ofrece en consecuencia una nueva perspectiva de la dinámica, desconocida hasta la fecha, que permite convertir trayectorias consideradas caóticas hasta ahora,  en deterministas y modelables.

Su conclusión principal es que sigue existiendo un espacio científico, todavía no estructurado, en la dinámica y, más específicamente, en el ámbito de los cuerpos rígidos sometidos a múltiples rotaciones no coaxiales simultáneas, que es en el que se desarrolla la nueva teoría.

Interacciones dinámicas

La nueva propuesta, llamada Teoría de Interacciones Dinámicas (TID), generaliza conceptos dinámicos no inerciales, desestructurados en la mecánica clásica. Permite constatar y comprender la correlación física y matemática entre orbitación y rotación intrínseca, el equilibrio dinámico y secular de nuestro universo y la causalidad racional de que tengamos días y noches en la Tierra, de que tengamos solsticios y equinoccios o incluso las estaciones del año.

La TID es un sistema lógico-deductivo constituido a partir de hipótesis dinámicas. Mediante la observación de la naturaleza, el establecimiento de ciertas hipótesis iniciales, y a partir de nuevos axiomas y postulados, ha construido una estructura del conocimiento en relación con cuerpos sólidos rígidos, sometidos a sucesivas aceleraciones por rotación.

El modelo físico-matemático obtenido permite interpretar el comportamiento observable de estos cuerpos cuando están sujetos a momentos no coaxiales sucesivos, de acuerdo con las leyes deducidas, así como extraer nuevas consecuencias, inferencias y predicciones. Por ejemplo, la teoría permite justificar la desviación que sufre la trayectoria curvilínea horizontal de una pelota, cuando se somete a momentos no coaxiales.

Según el autor principal de esta investigación, Gabriel Barceló, estas hipótesis sugieren nuevas claves para comprender la dinámica de nuestro entorno y la armonía del universo. Un universo compuesto no sólo de fuerzas, sino también de sus momentos que, cuando actúan constantemente sobre cuerpos rígidos en rotación, con una velocidad de traslación también constante, generan un movimiento en órbita cerrado. Eso significa, por lo tanto, que el sistema se mueve, pero dentro de un equilibrio dinámico.

El resultado de esta investigación es la concepción de una teoría dinámica innovadora, que se aplica específicamente a los sistemas físicos rígidos en rotación, y que tiene numerosas y significativas aplicaciones científicas y tecnológicas.

Según Barceló, la aplicación de estas hipótesis dinámicas a la astrofísica, astronáutica y a otros campos de la física y la tecnología, permitirá nuevos y estimulantes avances en la investigación de la dinámica.

La dinámica es una rama de la mecánica que trata del movimiento y del equilibrio de los sistemas bajo la acción de las fuerzas. La dinámica describe la evolución en el tiempo de los sistemas físicos en relación con las acciones que provocan sus cambios de estado.

Una nueva teoría determina leyes más generalizadas del movimiento en el espacio

Aplicaciones espaciales

Una de las aplicaciones posibles de la nueva teoría se refiere a la dinámica espacial. Según la Teoría General de la relatividad, la masa de la Tierra deforma el espacio-tiempo en su entorno. En este supuesto, podemos suponer la analogía de que la Luna realiza también un movimiento de rodadura sobre la superficie curva del espacio-tiempo deformado por la Tierra, generando una nueva rotación del satélite, que podemos suponer no coaxial con la rotación intrínseca que ya dispone.

En este supuesto, se generarían las interacciones dinámicas previstas por la TID, originándose la órbita de la Luna cerrada y plana que observamos. De esta forma, se justifica el comportamiento de los cuerpos celestes, conforme a los criterios de la relatividad, sin necesitar pares o fuerzas.

En este mismo ámbito, también se puede justificar, del mismo modo, la segunda Ley de Kepler (los planetas se mueven con velocidad areolar constante), ya que, en el caso de órbita elíptica, ésta tiene que tener una causa según la TID. Esta causa es una variación de la velocidad de orbitación, lo cual es coherente con la mayor deformación del espacio-tiempo en las proximidades de la masa central.

Nuevas hipótesis dinámicas

Hay que tener en cuenta, destacan los investigadores, que en nuestro universo, los cuerpos celestes se encuentran en constante orbitación y rotación.

A partir de determinadas presunciones dinámicas, y basados en la nueva interpretación del comportamiento de los cuerpos en rotación, cuando son expuestos a sucesivos pares de fuerzas no coaxiales, la TID ha desarrollado nuevas hipótesis dinámicas para sistemas acelerados, que  permiten llegar a la conclusión de que se puede configurar un nuevo modelo matemático, en la teoría dinámica de campos de rotación, y nuevas leyes de comportamiento dinámico, para sistemas no inerciales.

Sus resultados han sido comprobados y confirmados mediante experimentos y simulaciones por ordenador, algo que, según Gabriel Barceló, “nos permite disponer de una nueva perspectiva de la dinámica del cosmos, desconocida hasta la fecha”. 

Referencias bibliográficas

Theory of Dynamic Interactions: Synthesis. TMLAI, Vol 5, No 5 (2017). DOI:http://dx.doi.org/10.14738/tmlai.55.3344

Nuevo Paradigma en Física: Teoría de Interacciones Dinámicas: Volumen 1.
ISBN-10: 8461774965
New paradigm in physics: Theory of dynamic interactions (Volume 1). ISBN-13: 978-8461773169

Número especial de la revista World Journal of Mechanics (WJM) sobre la TID. Volume 7, Number 3, March 2017 Special Issue on Rotational Dynamics: Theory of Dynamic Interactions.

Este número especial incluye los siguientes 7 artículos:
 

  • Cano, Julio: Rotational dynamics: An exciting challenge . World Journal of Mechanics, Volume 7. Number 3, March 2017 (Special Issue on Rotational Dynamics: Theory of Dynamic Interactions). DOI: 10.4236/wjm.2017.73008 
  • Alvarez Martínez, Alejandro: Theory of dynamic interactions: innovations . World Journal of Mechanics. Special issue: Rotational Dynamics: Theory of Dynamic Interactions. 7, 101-119. March, 2017.DOI: 10.4236/wjm.2017.73010
  • Barceló Aristoy. Veronica: A scientific legacy: Theory of Dynamics Interactions . World Journal of Mechanics. Special issue: Rotational Dynamics: Theory of Dynamic Interactions. 7, 85-100March, 2017. DOI: 10.4236/wjm.2017.73009 
  • Dalby, F. (2017) Rolling Over into the Age of Algorithm. World Journal of Mechanics, Volume 7, 39-42. Number 3, March 2017 (Special Issue on Rotational Dynamics: Theory of Dynamic Interactions). DOI: 10.4236/wjm.2017.73005.
  • Garcia-Moliner, F. (2017) Physico-Mathematical Models in Rotational Motions. World Journal of Mechanics, Volume 7, 35-38. Number 3, March 2017 (Special Issue on Rotational Dynamics: Theory of Dynamic Interactions). DOI: 10.4236/wjm.2017.73004.
  • Martín Gutiérrez, Almudena: The flight of the boomerang: comments . World Journal of Mechanics, Volume 7. Number 3, March 2017 (Special Issue on Rotational Dynamics: Theory of Dynamic Interactions). DOI: 10.4236/wjm.2017.73007
  • Merino, J. (2017) The Works and Days of Gabriel Barceló. World Journal of Mechanics, Volume 7, 43-45. Number 3, March 2017 (Special Issue on Rotational Dynamics: Theory of Dynamic Interactions). DOI: 10.4236/wjm.2017.73006.

 

RedacciónT21

1 comentario

  • Yo creo que se debe partir que no existe partícula en el universo que no se este moviendo por lo que la primera ley de Newton debería decir: Un cuerpo (partícula) no puede cambiar su cantidad de movimiento a menos que se le aplique una fuerza y la segunda debería decir: la fuerza es igual a la variación del movimiento con respecto al tiempo es decir F= d(mv)/dt. a lo mejor estoy equivocado le agradecería decírmelo para no seguir avanzando.

RSS Lo último de Tendencias21

  • Descubren la primera evidencia de antigua vida humana en cuevas de lava 19 abril, 2024
    Los arqueólogos han descubierto la primera evidencia de que los humanos alguna vez ocuparon una cueva en Arabia Saudita formada por lava: hallaron diversos artefactos que confirman la actividad humana desde hace al menos 10.000 años hasta 3.500 años atrás, en esa red de cuevas de lava.
    Pablo Javier Piacente
  • Desarrollan un enjambre de cucarachas cyborgs controladas por IA para misiones peligrosas 19 abril, 2024
    Un equipo científico ha logrado crear un sistema robótico que permite manejar a distancia un pequeño ejército de cucarachas cyborgs, controladas a través de un algoritmo de Inteligencia Artificial (IA) para optimizar su navegación. Podrían ser de gran utilidad en operaciones de salvataje y gestión de desastres.
    Pablo Javier Piacente
  • La geometría del caos, ¿futuro de la arquitectura? 19 abril, 2024
    Las asimétricas celosías chinas de rayos de hielo, con una antigüedad de al menos 200 años, pueden inspirar la arquitectura actual porque proporcionan mayor estabilidad, resistencia y estética, que las estructuras simétricas. Además, sus patrones geométricos son los mismos que muestran nuestros huesos.
    Redacción T21
  • Los abrazos alivian la ansiedad y la depresión, según un nuevo estudio 18 abril, 2024
    Los abrazos y otras formas de contacto físico pueden ayudar con la salud mental en personas de todas las edades, según una nueva revisión de 212 estudios previos. Aunque esto ya estaba claro, los expertos aún no habían podido determinar qué tipo de contacto es el que genera más ventajas y por qué.
    Pablo Javier Piacente
  • Corrientes de estrellas y materia oscura diseñaron a la Vía Láctea 18 abril, 2024
    Restos de galaxias absorbidas por la Vía Láctea conforman corrientes estelares que la diseñaron a lo lardo de su historia. Algunas de esas fusiones podrían arrojar luz sobre el misterio de la materia oscura.
    Pablo Javier Piacente
  • Ya vivimos en un mundo de ciencia ficción 18 abril, 2024
    El Meta World Congress celebrado la semana pasada en Madrid ha dejado claro que los mundos virtuales y los videojuegos son el laboratorio de un Metaverso cada vez más inteligente y que la tecnología inmersiva cambiará el teatro y los conciertos. Un proceso de fusión de inteligencias llevará a la creatividad artificial a mezclarse con […]
    ALEJANDRO SACRISTÁN (enviado especial)
  • Descubren el pan más antiguo en Turquía: tiene 8.600 años 17 abril, 2024
    Un equipo de arqueólogos ha descubierto el pan más antiguo conocido en todo el mundo, que data del año 6600 a. C. Fue identificado en Çatalhöyük, un destacado asentamiento neolítico en Anatolia central, Turquía.
    Pablo Javier Piacente
  • Detectan un enorme agujero negro dormido en nuestra galaxia 17 abril, 2024
    El agujero negro de masa estelar más monstruoso de la Vía Láctea es un gigante dormido que acecha cerca de la Tierra, según un nuevo estudio. Con una masa casi 33 veces mayor que la del Sol, esta colosal estructura cósmica yace oculta a menos de 2.000 años luz de nuestro planeta, en la constelación […]
    Pablo Javier Piacente
  • Los pájaros reviven en sus sueños experiencias reales 17 abril, 2024
    Una investigación increíble ha descubierto que los pájaros a veces sueñan que están defendiendo su territorio frente a rivales, mostrándose con una cresta erizada de plumas y con un trino asociado al enfrentamiento.
    Redacción T21
  • Descubren cómo Plutón consiguió su corazón 16 abril, 2024
    El misterio de cómo Plutón consiguió una característica gigante en forma de corazón en su superficie finalmente ha sido resuelto: los científicos lograron reproducir con éxito la forma inusual con simulaciones numéricas, atribuyéndola a un impacto gigante y lento en ángulo oblicuo. Se trató de una colisión con un cuerpo planetario de unos 700 kilómetros […]
    Pablo Javier Piacente