Tendencias 21. Ciencia, tecnología, sociedad y cultura




Una técnica de laboratorio-en-un-chip permite analizar células, de una en una

Utiliza 'perlas de afinidad', granos de silicio que atrapan las biomoléculas diana


Investigadores suizos han desarrollado una técnica de laboratorio-en-un-chip que permite analizar las células a nivel individual. Para ello utilizan microfluidos y 'perlas de afinidad', es decir, granos de silicio de tamaño minúsculo que atrapan las biomoléculas diana del interior de las células que contienen la información que se está buscando.




El laboratorio-en-un-chip de EPFL es capaz de analizar células individuales. Fuente: EPFL.
El laboratorio-en-un-chip de EPFL es capaz de analizar células individuales. Fuente: EPFL.
Científicos de la Escuela Politécnica Federal de Lausana (EPFL, Suiza) han desarrollado una nueva técnica de laboratorio-en-un-chip para analizar las células individuales de una población celular entera. El nuevo método puede cambiar la forma en que se estudian las poblaciones mixtas de células, como las de los tumores.

Las células individuales de una población, por ejemplo, un tumor, pueden variar mucho en términos de bioquímica y de la función que cumplen. Con el fin de entender completamente y abordar esta variabilidad, es necesario perfilar las propiedades de cada célula individual, tales como las interacciones entre su ADN, ARN y proteínas. Esto siempre ha sido un reto debido a las limitaciones técnicas y físicas asociadas con la fragilidad y el pequeño tamaño de las células, así como la gran variedad y sin embargo baja cantidad de biomoléculas que contienen.

Los científicos de EPFL han combinado ahora, por primera vez, perlas de afinidad (affinity beads) -granos de silicio de tamaño minúsculo- con microfluidos para producir un método integrado, altamente sensible, para el estudio de células individuales que pronto podría ser utilizado en el diagnóstico clínico. El pionero trabajo se publica en la revista Small.

Hay dos obstáculos principales para el análisis eficiente de una sola célula: en primer lugar, la gran cantidad de diferentes tipos de de biomoléculas presentes en pocas cantidades que tienen que ser investigados en cada célula. En segundo lugar, el gran número de células que tienen que ser procesadas, especialmente cuando se trata de detectar cambios raros, que se producen sólo en pocas células de una gran población.

Proceso mediante el cual la perla de afinidad (rojo) entra en la célula y atrapa la biomolécula diana (verde), que después es analizada. Fuente: Small.
Proceso mediante el cual la perla de afinidad (rojo) entra en la célula y atrapa la biomolécula diana (verde), que después es analizada. Fuente: Small.
Superación de los obstáculos

El laboratorio del investigador Horst Vogel, en EPFL, fue capaz de superar estos obstáculos mediante la combinación de varias micro-tecnologías: Perlas de afinidad de tamaño micrométrico o submicrométrico, transferidas a las células, y la extracción de estas perlas de las células individuales en un canal microfluídico.

En la técnica, desarrollada por el estudiante de doctorado Michael Werner, la molécula diana de dentro de una sola célula es capturada dentro de granos de silicio de tamaño (sub)micrométrico, que han sido previamente recubiertos con agentes capturadores, por ejemplo anticuerpos, que pueden unirse específicamente a la biomolécula diana en la célula.

Cuando es captada por una célula, la perla entra primero en una jaula cerrada intracelular llamada fagosoma. Esto crea un problema, ya que el fagosoma evita que la perla encuentre su biomolécula diana dentro de la célula. Con el fin de liberar a la perla del fagosoma, los investigadores utilizaron un truco fotoquímico. Junto con las perlas, también incubaron las células con moléculas fotosensibles, que se incorporaron a la membrana del fagosoma.

Cuando la luz brilla sobre las células, las moléculas fotosensibles rompen las membranas del fagosoma. Con las membranas rotas, las perlas son liberadas al interior de la célula, donde capturan y extraen todas las moléculas diana del citoplasma de la célula con gran especificidad.

A continuación, las células que contienen perlas pasan a través de un chip de microfluidos: un pequeño dispositivo diseñado específicamente para controlar el flujo de pequeños volúmenes de fluidos a través de una red de pequeños canales (100 micras de anchura) grabados en portaobjetos de vidrio. Los canales de este estudio son tan estrechos que las células sólo pueden atravesarlos de una en una.

Las células pasan a través de un punto en el canal donde unas "pinzas de láser" (un haz láser altamente enfocado) atrapa las células individuales mediante la interacción con sus perlas internas. Entonces se rompe la membrana de las células atrapadas (una lisis), dejando sólo en la trampa láser las perlas unidas a las biomoléculas diana. Las perlas son luego analizadas directamente en el interior del dispositivo de microfluidos.

En el estudio de EPFL, los científicos exploraron varios tipos diferentes de células, proporcionando una prueba de concepto para su nuevo método de análisis de células individuales.

El equipo está ahora trabajando con el Hospital Universitario de Lausana para probar su ensayo en células cancerosas de tumores reales, que muestran una enorme variabilidad en la señalización de perfiles de unas células individuales a otras. "Esperamos que la caracterización de estas variaciones mejore el tratamiento de la enfermedad a nivel individual", explica Vogel en la nota de prensa de la universidad.

Referencia bibliográfica:

Werner M, Palankar R, Arm L, Hovius R, Vogel H.: Microfluidic Single-Cell Analysis with Affinity Beads. Small (2015). DOI: 10.1002/smll.201402650.

Viernes, 13 de Febrero 2015
EPFL/T21
Artículo leído 3772 veces




Nota


Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.

Otros artículos de esta misma sección
< >

Jueves, 1 de Diciembre 2016 - 08:00 Inteligencia artificial para catar quesos