Tendencias 21. Ciencia, tecnología, sociedad y cultura




El gato de Schrödinger vive también en los sistemas biológicos

Consiguen la superposición de estados en una bacteria sensible a la luz


El gato de Schrödinger vive también en los sistemas biológicos, además de en los sistemas no orgánicos, ya que una investigación ha determinado que las moléculas implicadas en la fotosíntesis presentan los mismos efectos cuánticos que la materia inerte. La superposición de estados se consiguió en una bacteria sensible a la luz.





La figura muestra el complejo fotosintético de bacterias de azufre verde que capturan la luz. Los círculos verde y amarillo resaltan las dos moléculas excitadas simultáneamente. Imagen: Thomas la Cour Jansen / Universidad de Groningen.
La figura muestra el complejo fotosintético de bacterias de azufre verde que capturan la luz. Los círculos verde y amarillo resaltan las dos moléculas excitadas simultáneamente. Imagen: Thomas la Cour Jansen / Universidad de Groningen.
Las moléculas implicadas en la fotosíntesis presentan los mismos efectos cuánticos que la materia no orgánica, según una nueva investigación de la Universidad de Groningue (Holanda) dirigida por Thomas La Cour Jansen.

La interpretación de estos efectos cuánticos en la fotosíntesis puede ayudar al desarrollo de dispositivos de captación de la luz inspirados en la naturaleza, señalan los investigadores en un comunicado. Los resultados se publican en la revista Nature Chemistry.

Desde hace años, existe un debate científico sobre los efectos cuánticos de los sistemas biológicos. La idea fundamental es que los electrones pueden estar en dos estados diferentes a la vez hasta que se produce la observación, tal como se refleja en la experiencia de pensamiento conocida como gato de Schrödinger.

En esta experiencia, el gato está en una superposición de estados, vivo y muerto a la vez, hasta que el observador entra en escena y descubre (o determina) si está vivo o muerto. Este es el comportamiento aparente de los electrones.

Investigaciones anteriores ya habían determinado que las moléculas captadoras de luz que se encuentran en bacterias pueden ser excitadas en dos estados simultáneos. Esta constatación probaría que se dan efectos mecánico-cuánticos en los sistemas biológicos, pero en las experiencias realizadas hasta ahora esa excitación cuántica duraba algo más de 1 picosegundo (la billonésima parte de un segundo), mucho más de lo que podría esperarse según la mecánica cuántica.

La nueva investigación demuestra que esta observación anterior es falsa, que los supuestos efectos cuánticos observados anteriormente en las moléculas captadoras de luz eran sólo vibraciones regulares de estas partículas.

En busca del gato de Schrödinger

Esta constatación llevó a Jansen y a su equipo a profundizar en la investigación, para comprobar si efectivamente el efecto del gato de Schrödinger se manifiesta en materia no orgánica.

Para ello utilizaron diferentes polarizaciones de la luz para efectuar medidas en un grupo de bacterias conocidas como Chlorobi, capaces de captar la luz. Estas bacterias poseen un complejo fotosintético constituido de siete moléculas sensibles a la luz.

En el experimento, un fotón excitó a dos de estas moléculas sensibles a la luz y la espectroscopia mostró la superposición de estados típica del universo cuántico, mostrando una señal oscilatoria específica.

Este fenómeno de superposición duró el tiempo previsto por la mecánica cuántica, demostrando así que los efectos cuánticos conseguidos en las bacterias procedían de la energía superpuesta simultáneamente a las dos moléculas. Según Jansen, los sistemas biológicos presentan efectivamente los mismos efectos cuánticos que los sistemas no biológicos.

Las técnicas de observación desarrolladas para este proyecto de investigación pueden aplicarse a diferentes sistemas, biológicos o no, lo que permitirá a otros científicos aprovecharlas para desarrollar sistemas de almacenamiento de energía solar u ordenadores cuánticos, concluyen los investigadores.

Referencia

Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex. Erling Thyrhaug, Thomas L. C. Jansen et al. Nature Chemistry (2018). doi:10.1038/s41557-018-0060-5
 


Martes, 22 de Mayo 2018
Redacción T21
Artículo leído 2711 veces



Nota




1.Publicado por Clous TONI el 04/06/2018 15:27
Si el gato fuéramos los humanos y la caja el planeta tierra eso significa que solo vivimos porque alguien así nos ve ....
También estamos vivos o muertos todo depende de quien nos ve y de su punto de vista y si algún día deja de vernos vivos que pasaría ...
Solo somos recuerdos que se van borrando con el paso del tiempo...

Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.

Otros artículos de esta misma sección
< >

Viernes, 13 de Julio 2018 - 11:00 Descubren cómo se inicia el Alzheimer en el cerebro

Jueves, 12 de Julio 2018 - 09:00 Cada persona tiene una anatomía cerebral única



Da alas a tus sueños