Recomendar este blog Notificar al moderador
Menu

He publicado un nuevo artículo sobre la Teoría de Interacciones Dinámicas, en el último número de la revista: Engineering And Technology Journal. El artículo se titula: ADVANCED DYNAMICS: TECHNOLOGICAL APPLICATIONS, y es un resumen actualizado de las aplicaciones tecnológicas de nuestro proyecto de investigación sobre dinámica de sistemas no inerciales.


Puede obtenerse el texto de este artículo, DINÁMICA AVANZADA: APLICACIONES TECNOLÓGICAS, publicado en Engineering and Technology Journal, e-ISSN: 2456-3358, Volume 04, Issue 08 August-2019, Page No.-625-626. DOI: 10.33826/etj/v4i8.01, I.F. -4.449© 2019, ETJ, en esta dirección:
http://everant.org/index.php/etj/article/view/342/305
En el texto se describen algunas de las numerosas aplicaciones tecnológicas que pueden derivarse de la teoría dinámica que se propone.
Se ha encontrado un nuevo criterio aplicable para el entendimiento del acoplamiento de campos de velocidades. La teoría dinámica innovadora que ha sido desarrollada, basada en nuevos conceptos como la inercia rotacional o el acoplamiento de campos, tiene numerosas aplicaciones tecnológicas en sistemas acelerados por rotación.
Hay numerosas aplicaciones tecnológicas posibles, especialmente en dinámica orbital, determinación de orbita y control de órbita; una aplicación sería poder calcular la trayectoria de cualquier sólido en el espacio con momento angular intrínseco.
Dentro de la perspectiva tecnológica, la teoría permite proponer un nuevo sistema de gobierno, independientemente de un timón o de cualquier otro elemento externo. También proporciona muchas hipótesis innovadoras, como por ejemplo el análisis de tensiones internas en el movimiento de los cuerpos, debidos a esfuerzos internos. El concepto dinámico de acoplamiento sugiere la posibilidad de realizar una conversión de potencia entre términos acoplados en ambos sentidos. Podemos asumir que la energía cinética rotacional se puede convertir en energía cinética de traslación, o viceversa, lo que nos lleva a concebir, por ejemplo, el concepto dinámico de palanca. (Barceló. G.: Technological applications of the new theory of dynamic interactions Global Journal of Researches in Engineering-A: Mechanical and Mechanics Engineering (GJRE-A). Volume 13 Issue 5 Version 1.0 October 2013).
 
En el tratado NUEVO PARADIGMA EN FÍSICA, describíamos algunas de las muchas aplicaciones tecnológicas que pueden derivarse de la teoría propuesta:
  • Confinamiento en reactores de fusión nuclear (Barceló, Gabriel: Dynamic Interaction: A New Concept of Confinement. Global Journal of Science frontier Research: A physics & space science. GJSFR A Volume 16 Issue 3, 2016. https://globaljournals.org/GJSFR_Volume16/E-Journal_GJSFR_(A)_Vol_16_Issue_3.pdf y Barceló, G.: Dynamic Interaction Confinement. World Journal of Nuclear Science and Technology Vol.4 No.4, October 29, 2014. DOI: 10.4236/wjnst.2014.44031
http://www.scirp.org/journal/PaperInformation.aspx?paperID=51026&
http://dx.doi.org/10.4236/wjnst.2014.44031)  
Podemos pensar en una palanca dinámica con usos tecnológicos y efectos prácticos. Esta palanca dinámica nos permitiría diseñar mecanismos en los que el resultado de su acción podría ser obtenido sin consumo de energía, así la energía proporcionada es recuperable. Además de diseñar una palanca dinámica o dispositivos de conservación de energía, la teoría posibilita aplicaciones en el gobierno de móviles en el espacio, por ejemplo aviones o submarinos, o también en medios de transporte con trayectoria en superficie, como barcos o vehículos terrestres. En este caso, los dispositivos de gobierno serían de fácil diseño y manejo. El desarrollo tecnológico de esta teoría tiene muchos usos, incluyendo el ocio.
Además de sistemas para el gobierno de naves espaciales, el diseño de una palanca dinámica, o el cálculo más preciso de trayectorias balísticas, de satélites o de proyectiles con rotación intrínseca, la teoría nos permite también intuir aplicaciones energéticas, como por ejemplo, en el confinamiento de reactores nucleares de fusión, o incluso, la determinación de las causas del devastador efecto de los huracanes. (Barceló, Gabriel: New Paradigm in Physics, Volume II: Assumptions and applications of the Theory of Dynamics Interactions, epigraph 9. Amazon, 2018).
 
Gobierno de móviles y otros dispositivos
Un sistema de gobierno dinámico para navegar un buque, comprende medios para proporcionar dentro del barco, un movimiento de rotación intrínseca alrededor de un eje paralelo al principal de inercia de la embarcación. Se caracteriza por el hecho de que comprende también un dispositivo para el desplazamiento de la posición relativa del centro de gravedad de la embarcación, en un recorrido que puede ser paralelo a dicho eje principal de inercia. Así que, el barco provisto de momento angular, es sometido a un nuevo par no coaxial, sustancialmente ortogonal a dicho eje principal de inercia, con lo que se le induce a seguir una trayectoria curvilínea.
El timón dinámico aplicable al gobierno de buques propuesto, sustituye el timón tradicional mediante la incorporación de un dispositivo dinámico. Más concretamente, el timón dinámico aplicable para el gobierno de buques, puede estar constituido por un cilindro conectado con el casco en la bodega, y enfocado adecuadamente, con su eje paralelo al eje longitudinal del barco.
En el caso de los barcos de vela, el dispositivo cilíndrico se puede colocar debajo de la quilla, en sustitución del contrapeso fijo de estos buques. También hay que señalar que el efecto dinámico de estos timones de barcos, cilíndricos y en rotación, puede llevarse a cabo por un motor eléctrico interno o, en caso de ser externo al casco, por una hélice en la popa del propio cilindro para ser movida por el empuje de la embarcación, incluso en barcos de vela movidos por el viento. (Barceló, Gabriel: New Paradigm in Physics, Volume II: Assumptions and applications of the Theory of Dynamics Interactions, epigraph 9.4. Amazon, 2018).
 
Otras aplicaciones tecnológicas
También podemos referirnos a algunos divertimentos que tienen su fundamento también en la Teoría de Interacciones Dinámicas. Tal es el caso de:
  • El boomerang.
  • Una piedra saltando sobre el agua, cuyo efecto se consigue cuando dicha piedra gira sobre sí misma.
  • La peonza.
  • El péndulo de interacciones dinámicas
Nuestro proyecto de investigación, confirmado por pruebas experimentales y por un modelo de simulación de ordenador, puede tener numerosas aplicaciones en el campo espacial, por ejemplo, y como ya hemos indicado, en la concepción de nuevos sistemas de gobierno de aviones y aeronaves, su aplicación para balística, o en una determinación más precisa de las trayectorias de proyectiles, cohetes, sondas o satélites con rotación intrínseca.
A título de ejemplo, enumeramos a continuación brevemente las aplicaciones más interesantes:
  1. Transporte aéreo y espacial, control de vuelo: roll coupling.
  2. Aplicaciones de gobierno de naves y satélites, sistemas de navegación.
  3. Aplicaciones marinas: Timón dinámico, gobierno de torpedos y submarinos.
  4. Gobierno de elementos móviles: aéreos, terrestres y marinos.
  5. Buque para el transporte de productos líquidos y gases.
  6. Gobierno de cohetes y misiles.
  7. Cálculo y control de trayectorias de balística, proyectiles, cohetes, sondas espaciales y satélites.
  8. Lanzamiento de vehículos espaciales.
  9. Motor electromagnético con rotor externo.
  10. Aplicaciones energéticas y de ahorro de energía: confinamiento inercial dinámico.
  11. Aplicaciones de defensa: Diseño de nuevas armas y tecnologías.
  12. Predicción de huracanes y sus daños.
  13. Otras aplicaciones no militares en ocio, ciencia y tecnología.
Para obtener una mayor información de este proyecto de investigación sobre dinámica, sugerimos acudir a los libros y textos referidos y también visitando los siguientes portales:
https://newparadigminphysics.com/
http://www.advanceddynamics.net/
http://www.dinamicafundacion.com/
http://www.tendencias21.net/fisica/
https://club.tendencias21.net/mundo/
http://imagouniversi.com/
 
 

Gabriel Barceló
04/09/2019


El 26 de agosto de 2019 se ha producido un accidente aéreo, perdiendo la vida el comandante de un caza C-101, al precipitarse al mar el avión, cerca de La Manga del Mar Menor, en Murcia.
El accidente pudiera tener causa en un fenómeno dinámico identificado en la Teoría de Interacciones Dinámicas.


Según las noticias: Instantes antes de estrellarse, el piloto intentó rectificar la trayectoria del avión que caía en picado. En otras noticias se informaba de que el avión estaba realizando un bucle o rizo.
La Comisión de Investigación Técnica de Accidentes de Aeronaves Militares (CITAAM) ha iniciado ya los trabajos para intentar aclarar las causas del siniestro, que se ha producido durante un vuelo de adiestramiento previo al inicio del curso en la AGA.
Se alega que el avión siniestrado era un caza C-101 biplaza, de un modelo ya muy veterano, que está previsto reemplazar a corto plazo, por un nuevo avión de entrenamiento integrado, para la Academia General del Aire, de San Javier (Murcia). Este avión es, desde hace casi 40 años, el avión de entrenamiento de los futuros pilotos del Ejército del Aire, así como el utilizado por la patrulla Águila, y su vida útil terminaría en 2020-2021.
No obstante, el accidente pudiera no ser debido a la antigüedad del aparato, si no a un fenómeno dinámico de difícil resolución. Es el temido acoplamiento o roll coupling, que ocurre cuando un aeroplano, que está volando inicia una vuelta de tornillo o cualquier otro tipo de acrobacia que implique, por ejemplo, un giro alrededor de su eje principal de inercia, y simultáneamente comienza una nueva maniobra de gobierno con una trayectoria curva. (New Paradigm in Physics, Volume II: Assumptions and applications of the Theory of Dynamics Interactions, epigraph 7.10, Amazon, 2018.
Ya expresábamos en la ponencia On the Equivalence Principle AC-10-A.2.1.1, presentada ante el 61st International Astronautical Congress, en Praga, en 2010: De acuerdo con las hipótesis dinámicas sostenidas, la distribución no homogénea de velocidades, generadas por la nueva rotación no coaxial del avión, se acoplan con el campo de velocidades de traslación, causando una desviación de la trayectoria, así como una posible pérdida de control. Este, y muchos otros ejemplos, pueden ser fácilmente explicados con las hipótesis de nuestra Teoría de Interacciones Dinámicas (TID)
En nuestra opinión, el avión atenderá a las leyes de la Teoría de Interacciones Dinámicas, ya que se habrá producido el acoplamiento entre su campo de velocidad de traslación y el campo de velocidades generado en la interacción dinámica resultante de la variación espacial del momento angular adquirido por el avión, al iniciar su rotación intrínseca.
No obstante, deberemos diferenciar entre la distribución de velocidades iniciales, no homogéneas, que se generan en una sección del fuselaje del avión, cuando dispone de giro sobre su eje principal, y se le obliga a una nueva rotación sobre un eje horizontal, y la distribución de velocidades resultantes no homogéneas en la misma sección.
Conforme a la TID, esta distribución de velocidades resultantes, se acopla con la velocidad de traslación, generando una desviación no deseada de la trayectoria.
El avión con roll coupling es también gobernable, pero con otra mentalidad, distinta a la habitual en el control de los aviones en simple traslación, sin momento angular intrínseco. Para un correcto gobierno, el piloto tiene que conocer las reacciones dinámicas del avión, cuando es sometido a dos giros simultáneos, no coincidentes espacialmente.
Sugerimos que sean exploradas estas hipótesis al analizar las causas del accidente.
Para obtener una mayor información de esta teoría, y de sus aplicaciones, sugerimos acudir a los libros y textos referidos y también visitando los siguientes portales:
https://newparadigminphysics.com/
http://www.advanceddynamics.net/
http://www.dinamicafundacion.com/
http://www.tendencias21.net/fisica/
https://club.tendencias21.net/mundo/
http://imagouniversi.com/
 
 

Gabriel Barceló
27/08/2019


He publicado un nuevo artículo sobre la Teoría de Interacciones Dinámicas, en el número de agosto de la revista: Journal of Applied Mathematics and Physics (JAMP), http://www.scirp.org/journal/JAMP/
El artículo es un resumen actualizado de este proyecto de investigación sobre la dinámica de sistemas no inerciales.


Puede obtenerse el texto de este artículo: Una nueva mecánica celeste: Dinámica de sistemas acelerados, en esta dirección:
http://www.scirp.org/Journal/paperinformation.aspx?paperid=94386
El editor, ha realizado este comentario en relación al referido documento: En este artículo, el autor presenta la investigación realizada sobre el comportamiento dinámico de los sistemas no inerciales, proponiendo nuevas claves para comprender mejor la mecánica del universo. Aplicando la teoría de campos a las magnitudes dinámicas circunscritas a un cuerpo, este artículo ha logrado una nueva concepción del acoplamiento de estas magnitudes, para comprender mejor el comportamiento de cuerpos rígidos sólidos, cuando se someten a múltiples rotaciones simultáneas, no coaxiales. Eso es una buena idea.
La Teoría de Interacciones Dinámicas desarrollada en este nuevo artículo, permite justificar la constante coincidencia que se produce en la naturaleza entre orbitación y rotación intrínseca, y nos ha permitido desarrollar una dinámica específica para cuerpos en rotación, sometidos a sucesivos pares no coaxiales, en los que la secuencia de la acción de las fuerzas es decisiva, y su comportamiento, no coincide exactamente con las leyes de la Mecánica Clásica.
Nuestro proyecto de investigación nació de la observación física, de la búsqueda de una dinámica para sistemas acelerados basados en el Método Científico, y de la reflexión sobre la validez de los modelos matemáticos clásicos, que aceptan aplicar el álgebra vectorial a las magnitudes angulares.
Los resultados obtenidos son aplicables a la mecánica celeste del universo y, en general, a todos los cuerpos sometidos a rotaciones aceleradas, no coaxiales.
Nuestra estructura lógica dinámica, fue contrastada con pruebas experimentales y modelos de simulación por ordenador, obteniendo una plena coherencia entre los resultados de las simulaciones y la observación de los resultados de las evidencias empíricas. Estas pruebas fueron realizadas por el equipo investigador de Advanced Dynamics, pero también por terceras personas independientes, como Alberto Pérez, que diseñaron sus propios prototipos de comprobación experimental. El trabajo de Pérez, L. A.: New Evidence on Rotational Dynamics. World Journal of Mechanics, Vol. 3, No. 3, 2013, pp. 174-177, puede consultarse en:
 http://dx.doi.org/10.4236/wjm.2013.33016. http://www.scirp.org/journal/wjm
El último video realizado por Pérez, L. A.: Cylinder subjected to two non coaxic rotations. 2018 https://www.youtube.com/watch?v=hJSbVOHRfrU, muestra uno de los múltiples ejemplos experimentales de la Teoría de Interacciones Dinámicas, pero posiblemente es uno de los más sencillos y llamativos: un cilindro accionado mediante un dedo, que actúa sobre uno de sus bordes. Al impulsar al bote o cilindro con el dedo, lo hace rotar sobre su eje longitudinal (par principal), y simultáneamente también, sobre un eje vertical (par secundario).
En el video pueden advertirse los campos de velocidades que se generan. Existe un momento angular principal (mostrado con flechas), un par angular secundario perpendicular al anterior (mostrado con flechas), y una velocidad rectilínea del centro de masas del bote (mostrada con flechas). Ambas rotaciones, y la traslación del centro de masas del bote hacen que este se levante, sin la necesidad de una fuerza externa.
El bote se levanta con tendencia a ponerse vertical, incluso, puede quedar en pie sustentado sobre su base, en posición estable sobre la superficie plana del suelo, pero sin necesidad de ninguna fuerza externa que actúa en esa dirección. Cuando entra en acción la segunda rotación, la distribución de velocidades en las partículas del cilindro ya no permanece constante, sino que es variable, de conformidad con lo expuesto en la Teoría de Interacciones Dinámicas. La generación de un campo de velocidades variables implica la aparición de aceleraciones.
El campo de velocidades generado por el segundo par tendrá un componente vertical que se acopla con el campo de la velocidad de traslación, y obliga al centro de masas del cilindro a elevarse, es decir, el movimiento que se observa es opuesto a la acción del peso sobre el cilindro, cuya tendencia sería caer. Este video es una prueba evidente de la teoría que se sustenta, y recomendamos su visualización:
Como ya expusimos en el 61st International Astronautical Congress, del American Institute of Aeronautics and Astronautics, Prague, CZ. 2010, en la ponencia: On the equivalence principle. Nuestras referencias experimentales, y otras muchas que pudieran plantearse, infieren la existencia de otra dinámica rotacional, no newtoniana, necesaria para la identificación del comportamiento de cuerpos en rotación, cuando son sometidos a nuevos estímulos no coaxiales, y a los que su comportamiento, en la actualidad en muchos casos, se entiende anómalo, paradójico o caótico, ya que las leyes de que disponemos no permiten identificarlo y predeterminarlo.
En nuestro proyecto de investigación, puede encontrarse una total coherencia entre las especulaciones iniciales, las hipótesis originales, los principios y axiomas aplicados, las leyes físicas deducidas, incluso leyes causales que justifican el comportamiento observado, los modelos físico matemáticos correspondientes a las ecuaciones de movimiento que resultan de las leyes dinámicas deducidas, los modelos de simulación alcanzados, y las pruebas experimentales realizadas. Existen videos con esas pruebas experimentales.
Creemos que con ese nuevo modelo que proponemos, se facilitará la comprensión de nuestro universo observacional, y de los fenómenos físicos que advertimos en él.
Queremos sugerir el interés que debería plantear en física la exploración de sistemas no inerciales acelerados, y también expresar una llamada a la necesidad de desarrollar proyectos de investigación científica en este ámbito, para su evaluación y análisis, así como proyectos tecnológicos basados en estas hipótesis.
Para obtener una mayor información de esta teoría, sugerimos acudir a los libros y textos referidos y también visitando los siguientes portales:
https://newparadigminphysics.com/
http://www.advanceddynamics.net/
http://www.dinamicafundacion.com/
http://www.tendencias21.net/fisica/
https://club.tendencias21.net/mundo/
http://imagouniversi.com/

Gabriel Barceló
21/08/2019


Noticias de Física


Recientemente ha sido publicado en el periódico ABC un interesante artículo sobre este tema. Durante muchos siglos creíamos que estábamos estáticos en el centro del universo, y ahora nos preguntamos, incluso: ¿Está girando el universo?


 
Jose Manuel Nieves, con el sugestivo título: ¿Vivimos en un Universo en rotación? (https://www.abc.es/ciencia/abci-vivimos-universo-rotacion-201907101138_noticia.html) se refiere a esta cuestión en el periódico ABC de Madrid del 10 de julio, expresando: En la inmensidad del espacio que nos rodea, todo se mueve. Y la mayoría de los objetos, desde los planetas, sus lunas, las estrellas e incluso las galaxias, tienen en común el hecho de que están en rotación permanente. Parece, pues, lógico preguntarse si también el Universo entero está rotando. Una cuestión difícil, y a la que desde hace décadas los cosmólogos han dedicado enormes cantidades de tiempo y esfuerzo. No es para menos, porque averiguar la respuesta puede desvelarnos aspectos desconocidos, y seguramente sorprendentes, sobre la naturaleza misma del Universo en que vivimos.
Han sido analizadas las mediciones de la Radiación Cósmica de Microondas (CMB por sus siglas en inglés) para averiguar si esta información permite aclarar la cuestión, sin obtener un resultado concreto. Por lo que el autor añadía: Todo lo cual parece sugerir que el Universo posee un alto grado de homogeneidad, y que además no gira, a diferencia de la mayor parte de las "piezas" que lo componen. Y tampoco parece probable que futuras y más precisas mediciones de la polarización del CMB puedan cuestionar lo que ya sabemos.
Esta es la conclusión que actualmente puede afirmarse, y que ya expresé en el epígrafe 8.2.4.2 Universo en rotación del Tomo II del tratado Nuevo Paradigma en física (https://newparadigminphysics.com/es/inicio/): No existe consenso, en la actualidad, sobre si el universo está rotando o no, pero es un escenario completamente compatible con la teoría de la relatividad de Einstein.
Pero lo que es difícilmente cuestionable es que en el universo coincide la rotación intrínseca de cada cuerpo celeste, simultáneamente con su orbitación, o dicho de otra forma, todo cuerpo que orbita, tiene rotación intrínseca. Aunque históricamente, tardamos muchos siglos en percatarnos que nuestro planeta Tierra también rotaba sobre su eje, a la vez que orbitaba alrededor del Sol, mientras toda nuestra galaxia también gira sobre su eje. Es indudable que los cuerpos celestes, incluso las galaxias giran en el espacio, pero esa rotación, ¿es indicio suficiente para suponer que el universo gira en su conjunto?
El artículo se sustentaba en el reportaje ¿Gira el universo?, de Mara Johnson-Groh (https://www.livescience.com/65882-does-the-universe-rotate.html), aparecido el 7 de julio en la revista digital Live Science, y en el que la autora se pregunta: ¿Es el universo una peonza?
A esta misma cuestión, mi amigo Alf Gauna se refería en 21018 en su Blog (https://alfgauna.com/2018/03/04/un-universo-en-rotacion/), y en el expresaba: El hecho es que casi todos los objetos del Universo desde el quark hasta el supe cúmulo de galaxias más lejano posee momento angular intrínseco, es decir, rota sobre sí mismo.
 
 
NUEVO PARADIGMA
En el referido tratado Nuevo Paradigma en física, analizamos con detenimiento las ideas habidas sobre modelos de un universo en rotación: Los modelos abstractos de un universo en rotación se han estudiado ampliamente desde Kurt Gödel (1906 –1978): An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation, (Rev. Mod. Phys. 21, 447, published July 1, 1949), quien mostró un ejemplo consistente con la Relatividad General, que todavía se estudia (Vukovic R.: Tensor Model of the Rotating Universe, Exercise in Special Relativity , 2014). Por ahora, la posibilidad de un universo rotativo se ha discutido exhaustivamente en el marco de algunos tipos de modelos de Bianchi, como Tipo V, VII y IX (clasificación de algebras de Lie: Korotky Vladimir A. /Obukhov, Yuri N.: Bianchi-II Rotating World. Astrophysics and Space Science December 1998, Volume 260, Issue 4, pp 425–439, and On cosmic rotation. Gravity, Particles and Space-Time: pp. 421-439. 1996, https://doi.org/10.1142/9789812830180_0021 ).
Los modelos de Bianchi, son homogéneos pero anisótropos, por lo que pudieran entenderse como soluciones alternativas al modelo estándar, homogéneo e isótropo. Se trata de un análisis matemático de la clasificación algebraica de los modelos de Bianchi y de cada uno de los espacio-tiempo de Bianchi resultantes, en el ámbito de relatividad general, con el fin de determinar el modelo matemático idóneo para concebir nuestro universo (Valenzuela, Mississippi: Clasificación algebraica de los modelos de Bianchi. Thesis·for: Licenciatura en Física. August 2012. Universidad Autónoma de Zacatecas. México. DOI: 10.13140/RG.2.1.2650.5207
file:///G:/17%20PENDIENTE/0%20TID/NEW%20PARADIGM/Clasificaci%C3%B3n%20algebraica%20de%20los%20modelos%20de%20Bianchi.html).
El efecto de la rotación global del universo sobre la formación de galaxias fue investigado por Li-Xin Li (Li-Xin Li: Effect of the Global Rotation of the Universe on the Formation of Galaxies. Gen.Rel.Grav. 30 (1998) 497.
DOI: 10.1023/A:1018867011142. arXiv: astro-ph/9703082), encontrando que esa hipótesis de rotación global del universo, proporcionaba un origen natural para la rotación de las galaxias. Deducía que la morfología de los objetos formados por la inestabilidad gravitacional, en un universo en rotación y expansión, dependería de la amplitud de la fluctuación de densidad. La rotación global proporcionaba una explicación natural de la relación empírica entre el momento angular y la masa de las galaxias. Han sido realizados distintos estudios para analizar posibles alineaciones de los ejes de rotación de galaxias espirales (Trujillo, Ignacio; Carretero, Conrado; Patiri, Santiago G.: Detection of the effect of cosmological large-scale structure on the orientation of galaxies. 2006. The American Astronomical Society. U.S.A.
https://www.giss.nasa.gov/staff/mway/cluster/trujillo2006apj640_L111.pdf).
Conforme a un estudio de 2011 en el que se analizaron 15.158 galaxias espirales, se descubrió que, en la dirección del polo norte galáctico, un 7% más de las galaxias observadas tienden a rotar en la dirección contraria a las agujas del reloj, con una orientación de su eje equivalente. Es una proporción pequeña, pero suficientemente significativa como para sugerir que el universo podría estar rotando. Incluso su autor, Longo sugiere que el universo nació con momento angular (Longo, Michael J.: The universe was born spinning and continues to do so around a preferred axis. Physics Letters B 10.1011).
En un estudio posterior sobre la anisotropía del universo, el mismo autor incide de nuevo sobre la rotación de los cuerpos celestes (Longo, Michael J.: Detection of a dipole in the handedness of spiral galaxies with redshifts. Physics Letters B. Volume 699, Issue 4, 16 May 2011, Pages 224-229. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. https://doi.org/10.1016/j.physletb.2011.04.008).
Otros autores (Corsaro, Enrico; Yueh-Ning Lee, Rafael A. García, Patrick Hennebelle, Savita Mathur, Paul G. Beck, Stephane Mathis, Dennis Stello & Jérôme Bouvier: Spin alignment of stars in old open clusters. Nature Astronomy 1, 0064 (2017). Doi:10.1038/s41550-017-0064
https://www.nature.com/articles/s41550-017-0064) han advertido alineamientos de los ejes de rotación de las estrellas en un cúmulo galáctico (http://www.cea.fr/english/Pages/News/The-rotation-axes-of-stars-tell-us-about-how-they-were-born.aspx), sugiriendo hipótesis sobre las condiciones en las cuales las estrellas se formaron en nuestra galaxia (tendencias21: Las estrellas nacen alineadas y sus ejes orientados en la misma dirección. 20 /3/ 2017
file:///F:/Las%20estrellas%20nacen%20alineadas%20y%20sus%20ejes%20orientados%20en%20la%20misma%20direcci%C3%B3n.html). La misión M3 Plato (http://sci.esa.int/plato/), de la Agencia Espacial Europea, tiene previstas nuevas observaciones que permitirán confirmar esta propuesta, en otros cúmulos estelares.
Pero el origen de esa rotación sigue siendo preocupación científica: El origen de la rotación o giro de los objetos, desde las estrellas hasta las galaxias, sigue siendo una pregunta sin respuesta (Sivaram, C and Kenath Arun: Primordial Rotation of the Universe and Angular Momentum of a wide range of Celestial Objects. Indian Institute of Astrophysics, Bangalore, 560 034, India, 2011).
Es plenamente coherente con la teoría que sustenta un universo en constante y permanente rotación. Otros muchos autores coinciden en esta misma hipótesis dinámica (Chechin, L. M.: On the Modern Status of the Universe Rotation Problem. V. G. Fessenkov Astrophysical Institute, National Centre for Cosmic Researches and Technologies, National Space Agency, Almaty, Kazakhstan. Journal of Modern Physics, August 2013, 4, 126-132. http://dx.doi.org/10.4236/jmp.2013.48A012).
Podemos concebir un universo en el que dispongan de rotación intrínseca cada uno de sus cuerpos celestes y, simultáneamente con su orbitación, pero sin la rotación del conjunto, pero también podríamos imaginar espacios o grupos de galaxias con momento angular conjunto, e incluso un momento angular común para todo el cosmos.
La cuestión está en estudio, en plena evolución de análisis, y no podemos entender de qué disponemos ya de una solución definitiva sobre si el universo rota en su conjunto.
 
NEW PARADIGM IN PHYSICS, se puede encontrar en español en este portal, en papel o como libro electrónico:
https://www.amazon.es/dp/1980990395
 
Y en lengua inglesa en:
https://www.amazon.com/dp/B07BN9917M
 
Puede accederse a mayor información en estos PORTALES EN INTERNET
https://newparadigminphysics.com/
http://www.advanceddynamics.net/
http://www.dinamicafundacion.com/
http://www.tendencias21.net/fisica/
https://club.tendencias21.net/mundo/
http://imagouniversi.com/
 
 

Gabriel Barceló
28/07/2019


Hoy ha terminado la XXXVII bienal de la RSEF en Zaragoza. Con este título, y en el ámbito del Simposio: Didactics and History of Physics (GEDH), recordé el CXXV aniversario del nacimiento de Miguel Catalán, y su obra, en una ponencia dedicada a su memoria.


Debemos recordar a Miguel Antonio Catalán Sañudo (1894- 1957), pues su biografía, es una clara demostración de lo que el tesón y el trabajo humano pueden conseguir a partir de su propia capacidad, con esfuerzo y dedicación.
 
Nacido en Zaragoza el 9 de octubre de 1894, su dramática historia es la de un científico español que destacó a nivel internacional en La Edad de Plata de la Ciencia Española. Pero tras la Guerra Civil, es políticamente represaliado y expulsado de sus actividades científicas y docentes, convirtiéndose su vida, en un drama.
Miguel promocionó, ya antes de la guerra, la participación de la mujer en sus equipos investigadores. En sus dos escuelas sucesivas, el número de investigadoras femeninas era excepcional, para aquella época.
Su protagonismo compartido, en la Edad de Plata de la Física en España, fue indiscutible, pues la comunidad científica internacional lo quiso recordar, asignándole un grupo de accidentes geológicos en la Luna: los cráteres Miguel Catalán.
También podemos recordar su preocupación por la clasificación de los elementos químicos, y su propuesta de un nuevo modelo de Tabla Periódica de los elementos.
 
En la comunidad científica, hace muchos años que se ha llegado al convencimiento de que La Tabla Periódica de Elementos Químicos es uno de los instrumentos más significativos de la ciencia, y ha permitido a los científicos predecir la apariencia y las propiedades de la materia que compone el universo.
En los años cuarenta, al clasificar los elementos químicos a partir de sus estudios espectroscópicos, Catalán advierte ciertas anomalías en la Tabla Periódica utilizada, y propone una nueva metodología: indagó todos los rincones de la Ciencia. Y buscó siempre, y logró, la mayor claridad en la exposición y eficacia didáctica. Lo que le llevó entre otros muchísimos trabajos, a postular una Tabla Periódica de los elementos químicos, diferente de las conocidas del tipo Werner, más lógica, más intuitiva (Bufala Balmaseda, Carlos y Oliart D. Torres, Antonio. Revista Alción. Número extraordinario dedicado a Miguel Catalán 1972).
Podemos contribuir a recordar a Miguel Catalán enseñando química a partir de su Tabla Periódica de clasificación de los elementos químicos, y recordar la evolución histórica de los hallazgos en la determinación de la estructura atómica, a la que él contribuyo con sus descubrimientos.
En 1949 realizó la publicación simultánea, en Estados Unidos y en España de un nuevo Sistema Periódico, basado en el análisis de los espectros atómicos. Además, su discurso de ingreso en la Academia de Ciencias, que no pudo llegar a pronunciar, tenía también como tema el Sistema Periódico. En su biografía: Miguel Catalán. Memoria Viva, me he referido ampliamente a sus estudios sobre esta tabla.
El profesor Velasco, en el artículo titulado: Los Multipletes y el sistema periódico de los elementos, publicado en la revista de Óptica Pura y Aplicada, editada en homenaje a Miguel Catalán en 1972, ya recordaba este interés de nuestro profesor: En 1923 Catalán publicó un trabajo titulado “Los espectros y la clasificación periódica de los elementos”, y en 1925 escribía “... es interesante hacer notar que no solamente se encuentra periodicidad entre las dos mitades de los elementos de la fila del hierro por lo que se refiere al número azimutal de cuantos de sus términos fundamentales, sino también por el conjunto entero del espectro.”
Desgraciadamente, la nueva concepción de la Tabla Periódica de los Elementos, ideada por Miguel Catalán fue olvidada, incluso en España. Cuando hoy día se hacen comentarios o reseñas históricas sobre esta clasificación científica de la materia, las revistas, incluso las españolas, o en los discursos y ponencias, no se acuerdan ya de la obra de Miguel Catalán, ni se vindica su labor científica en esta materia.
 
Protagonista de la Edad de Plata de la Física en España.
Miguel Catalán es, posiblemente el máximo exponente de la cultura liberal española que representaba la Institución Libre de Enseñanza, que consigue instaurar, tras el desastre del 98, unos nuevos valores en la sociedad española, como era, por ejemplo, el estudio y el cultivo de la ciencia. La Junta para Ampliación de Estudios (JAE), presidida por Cajal, consiguió convertir España, en un breve periodo de su historia, en un país a la vanguardia cultural y científica del mundo de la preguerra.
En este periodo denominado: la Edad de Plata de la Física en España, destacó la labor científica de Miguel Catalán.
 
Investigador en Imperial College
La JAE le concede una beca y se traslada a Londres, en donde inicia nuevas investigaciones en el Imperial College (1919-1921), Catalán ha encontrado unas regularidades características en el espectro del Manganeso, ha definido una ley reiterativa de comportamiento del espectro, lo cual le ha permitido terminar de descifrar el espectro del manganeso, definiendo un nuevo patrón de referencia para este elemento; ha creado el método de los multipletes, como nueva herramienta para el análisis espectroquímico, abriendo la vía para interpretar los espectros de elementos complejos, pero principalmente, y a partir del concepto de valencia química, ha realizado una lógica deducción en su investigación que supone un paso de gigante en la comprensión de la estructura de la materia y en la interpretación de la corteza atómica.
Ha establecido un nuevo procedimiento de interpretación de la estructura electrónica del átomo complejo, y ha determinado la causalidad física de la supuesta correlación entre cada elemento y su espectro, entre los cambios de niveles de energía de los electrones y las líneas del espectro (Barceló, G.: La Trayectoria biográfica de Miguel Catalán y su necesaria reivindicación. Texto de la conferencia pronunciada en el Centro de Tecnologías Físicas “Leonardo Torres Quevedo”, Madrid. 31 de enero de 2012).
Pero esa prueba fundamental está asentada en una búsqueda metódica, fruto de un razonamiento lógico.
A partir de la prueba experimental, la observación y la deducción lógica, ha conseguido la comprensión de la verdadera configuración de la estructura de la materia, al determinar una correlación entre los electrones que constituyen la “valencia química” y ciertas líneas del espectro. Incluso, su deducción experimental le permite justificar la causalidad del espectro.
Todo lo cual le permite confirmar:
  • la interpretación de la configuración electrónica del átomo complejo
  • la correlación entre los cambios de niveles de energía de los electrones y el espectro del elemento.
  • la ley que define la estructura del átomo en cada elemento.
Recuerdo que nos comentaba que la clave de su descubrimiento se basaba en que había analizado el concepto de “valencia química”, y había comparado dos espectros del manganeso, pero uno ionizado, llegando a la conclusión de que la diferencia entre ambos espectros debería estar en los electrones de valencia.
Es importante destacar que esta intuición de Catalán es posteriormente aplicada en otros desarrollos científicos. (Barceló, G: En recuerdo de Miguel A. Catalán Sañudo. Anales de Química. Real Sociedad Española de Química, 2013, 109(4), 295–300).
El propio Catalán recordaba, en su curso de doctorado de 1946, como al volver a España, y antes de publicar su memoria, le facilita los resultados de su investigación a Sommerfeld:…había creado su teoría de los cuantos internos casi sin datos, con los alcalinos y los alcalinotérreos, y de repente se encontró con que yo le proporcionaba una gran cantidad de datos para su teoría. Al día siguiente me llamó y tuvimos una conversación que iba a ser el principio de una relación muy estrecha, que todavía hoy conservamos (Catalán, M.: Estructura del Átomo. Curso de doctorado febrero a mayo de 1946. Apuntes no editados).
En agosto de ese año, Sommerfeld presentó en los Annalen der Physik una ponencia innovadora sobre la interpretación de los espectros de elementos complejos, por el método de los números cuánticos, en el que reconoce reiteradamente la labor de Herr Catalán, al que debía el estímulo para llevar a cabo esta ampliación….(Barceló, G.: Miguel A. Catalán Sañudo. Memoria Viva. Editorial Arpegio. Barcelona, 2012).
¡Los más importantes científicos del momento, especializados en estructura atómica, como Fowler, Böhr, Russell y Sommerfeld, reconocieron públicamente los méritos de los descubrimientos de Catalán, y propagaron internacionalmente sus hallazgos y su nuevo método de los multipletes!
 
Modelo atómico B-S-C
Por todo ello, quiero aquí hacer pública la vindicación de la profesora de física del IES Miguel Catalán de Zaragoza: Ana Fuertes Sanz, y que el también profesor Carlos González Larraga, me ha trasmitido, consistente en proponer que el modelo Atómico de Bohr – Sommerfeld, sea recordado como Modelo Atómico de Bohr – Sommerfeld –Catalán, dada la personal contribución de Miguel Catalán a este modelo de estructura de la materia, y ante la evidencia de que su aportación fue reconocida por los otros dos investigadores.
Entendemos que la generalización relativista del modelo atómico de Bohr, realizada por Sommerfeld, y que cristaliza en un nuevo modelo atómico concreto y más elaborado, se debe a los estudios espectroscópicos de Catalán.
Por tanto, pedimos que sea aceptada la reivindicación propuesta y que apoyamos, y que sea recordado ese modelo atómico, denominándolo: Bohr – Sommerfeld –Catalán.
 
Su discípulo y director de cine, Jaime de Armiñán, llegó a escribir: Tendría gracia que en la luna hubiese un cráter con el nombre de Miguel Catalán, y en casa nos olvidáramos de él.

Gabriel Barceló
19/07/2019


1 2 3 4 5 » ... 6
Editado por
Gabriel Barceló
Eduardo Martinez
Fundador y presidente de diversas empresas, de asociaciones no lucrativas y de fundaciones, actuando como presidente de las mismas, ex-Presidente de la Federación de Ingenieros Industriales de España y ex -Vicepresidente del Instituto de la Ingeniería de España, Gabriel Barceló ha sido consultor en ingeniería de la edificación y asesor fiscal. Desde hace más de treinta y seis años desarrolla un proyecto de investigación científica sobre dinámica rotacional. Autor de numerosos libros, el último de ellos “Nuevo paradigma en Física” (Editado en inglés y español), y ha publicado más de cien artículos.




Tendencias científicas